Denoising Convolutional Variational Autoencoders-Based Feature Learning for Automatic Detection of Plant Diseases

Early detection is critical for maintaining quantity and quality of farming commodity. Currently, detection of plant diseases still requires human expertise and/or need microscopic identification such as spectroscopic technique and molecular biological. So, it would be very costly and time consuming...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2019 3rd International Conference on Informatics and Computational Sciences (ICICoS) s. 1 - 6
Hlavní autori: Zilvan, Vicky, Ramdan, Ade, Suryawati, Endang, Kusumo, R. Budiarianto S., Krisnandi, Dikdik, Pardede, Hilman F.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2019
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Early detection is critical for maintaining quantity and quality of farming commodity. Currently, detection of plant diseases still requires human expertise and/or need microscopic identification such as spectroscopic technique and molecular biological. So, it would be very costly and time consuming, and hence unattainable for small-holder farmers. The rapid development of intelligent agriculture using machine learning has led the widespread use of computer or smart-phones to solve this problem. So, early detection of plant disease can be performed with minimal support from human experts and microscopic identification is no longer needed. However, conventional machine-learning techniques are limited in their ability to process raw data directly. So it require some efforts and domain expertise to design feature extractor to support it. Moreover, impulse noise such as salt-pepper noise may present on the images and it arises another challenge to provide a robust system. In this paper, we present denoising convolutional variational autoencoders as automatic unsupervised feature extractor and automatic denoiser to learn and to extract good features directly from the raw data. Here, we use the output of denoising convolutional variational auto encoders as inputs to fully connected networks classifiers for automatic detection of plant diseases. Our experiments show the average accuracies of our method is better than denoising variational autoencoders which is built using fully deep connected networks architectures. We also found that our proposed method is more robust against noisy test data.
AbstractList Early detection is critical for maintaining quantity and quality of farming commodity. Currently, detection of plant diseases still requires human expertise and/or need microscopic identification such as spectroscopic technique and molecular biological. So, it would be very costly and time consuming, and hence unattainable for small-holder farmers. The rapid development of intelligent agriculture using machine learning has led the widespread use of computer or smart-phones to solve this problem. So, early detection of plant disease can be performed with minimal support from human experts and microscopic identification is no longer needed. However, conventional machine-learning techniques are limited in their ability to process raw data directly. So it require some efforts and domain expertise to design feature extractor to support it. Moreover, impulse noise such as salt-pepper noise may present on the images and it arises another challenge to provide a robust system. In this paper, we present denoising convolutional variational autoencoders as automatic unsupervised feature extractor and automatic denoiser to learn and to extract good features directly from the raw data. Here, we use the output of denoising convolutional variational auto encoders as inputs to fully connected networks classifiers for automatic detection of plant diseases. Our experiments show the average accuracies of our method is better than denoising variational autoencoders which is built using fully deep connected networks architectures. We also found that our proposed method is more robust against noisy test data.
Author Ramdan, Ade
Zilvan, Vicky
Krisnandi, Dikdik
Suryawati, Endang
Kusumo, R. Budiarianto S.
Pardede, Hilman F.
Author_xml – sequence: 1
  givenname: Vicky
  surname: Zilvan
  fullname: Zilvan, Vicky
  organization: Research Center for Informatics, Indonesian Institute of Sciences (LIPI),Bandung,Indonesia
– sequence: 2
  givenname: Ade
  surname: Ramdan
  fullname: Ramdan, Ade
  organization: Research Center for Informatics, Indonesian Institute of Sciences (LIPI),Bandung,Indonesia
– sequence: 3
  givenname: Endang
  surname: Suryawati
  fullname: Suryawati, Endang
  organization: Research Center for Informatics, Indonesian Institute of Sciences (LIPI),Bandung,Indonesia
– sequence: 4
  givenname: R. Budiarianto S.
  surname: Kusumo
  fullname: Kusumo, R. Budiarianto S.
  organization: Research Center for Informatics, Indonesian Institute of Sciences (LIPI),Bandung,Indonesia
– sequence: 5
  givenname: Dikdik
  surname: Krisnandi
  fullname: Krisnandi, Dikdik
  organization: Research Center for Informatics, Indonesian Institute of Sciences (LIPI),Bandung,Indonesia
– sequence: 6
  givenname: Hilman F.
  surname: Pardede
  fullname: Pardede, Hilman F.
  organization: Research Center for Informatics, Indonesian Institute of Sciences (LIPI),Bandung,Indonesia
BookMark eNotkMtOwzAQRY0ECyj9Ajb-gRQ_Uj-WJaEQKRJIPLbVxJkgS6kNToLE35NCNvfO4p7RzL0i5yEGJIRytuGc2duqqIr4khvO7UawWYw1Irf5GVlbbbgWhueKM3FJvkoM0Q8-fNAihu_YT6OPAXr6DsnDMu-mMWJwscU0ZHcwYEv3COOUkNYIKZzoLqa_3HGGHC1xRHeiaezocw9hpKUfcEaHa3LRQT_gevEVedvfvxaPWf30UBW7OvOCyTGzqJ2VbNt2ttWdUkapfD7bNoYBOBCqkTB_pBFE0xpp0aotMOZazZ0W0soVufnf6xHx8Jn8EdLPYSlC_gI-VVq4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICoS48119.2019.8982494
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728146102
1728146100
EndPage 6
ExternalDocumentID 8982494
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-9e7c9305df9d7f6686642819b80aaca26b3a4947ea2bd839e965a00cd71c72393
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546174100057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 07:39:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-9e7c9305df9d7f6686642819b80aaca26b3a4947ea2bd839e965a00cd71c72393
PageCount 6
ParticipantIDs ieee_primary_8982494
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)
PublicationTitleAbbrev ICICOS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8462081
Snippet Early detection is critical for maintaining quantity and quality of farming commodity. Currently, detection of plant diseases still requires human expertise...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms autoen-coders
Autoencoders
Computer architecture
Data mining
deep learning
Denoising convolutional variational autoencoders
Feature extraction
feature learning
Microscopy
Noise
Noise reduction
Plant diseases
plant diseases detection
Representation learning
Training
Title Denoising Convolutional Variational Autoencoders-Based Feature Learning for Automatic Detection of Plant Diseases
URI https://ieeexplore.ieee.org/document/8982494
WOSCitedRecordID wos000546174100057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8OBJZRO_ycGjceln-o66ORzIGPjBbiNN32Qg7dza_f2-pHUiePFSSvOgNEnz3i95v99j7JqW_CBKAykiDUaEqQkF0NQQoYEoirUPGh1R-ElNJslsBtMWu9lxYRDRJZ_hrb11Z_lZYSq7VdZPICG0ELZZW6m45mp9J-dI6I8H40HxHCaeZwkodGnMf9VNcW5jdPC_Fx6y3g__jk93nuWItTDvss8h5sXSQntOZttmyugP_kZwt9nS43dVWVhpSpueLO7JQ2XcBnnVGnmjpPrOKUx1dk6slQ-xdNlYOS8W3JYwKvmwPrTZ9Njr6OFl8Ciaggli6cugFIDKAP3A2QIytYjjJLbowoM0kVob7cdpoOlzFGo_zSgyQogjLaXJlGeU1UI7Zp28yPGEcWqRZKgMLUChDCClMFEqMAA68gjYnrKu7a75qtbEmDc9dfb343O2b0ekToK7YJ1yXeEl2zPbcrlZX7mB_AJhZ6FL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_7cGjlW7r1r2jggQiEhLRcCNdVwyJ2RQ2_n5fy8SYePGyLNtblrVd3_va73uPkGuc8oMwCTgLFWgmEi0Y4NBgQkMYRsoHZZxQeCCHw3gygVGN3Gy0MMYYRz4zt_bU7eWnuS7tUlkrhhjRgtgi26EQPl-rtb7pORxa_Xa_nT-L2POsBAUP1QO_Kqc4x9Hd_98rD0jzR4FHRxvfckhqJmuQz47J8rkF9xTNVtWgUe_0FQFvtahH78oit8kpLUGZ3aOPSqkN88qFoVUu1TeKgaqzc-laaccUjo-V0XxGbRGjgnbW2zbLJnnpPozbPVaVTGBznwcFAyM14C-cziCVsyiKI4svPEhirpRWfpQECj9HGuUnKcZGBqJQca5T6Wlps6EdkXqWZ-aYULzD0VBqnIIEDyDBQJFL0AAq9BDanpCGba7pxzorxrRqqdO_L1-R3d74aTAd9IePZ2TP9s6aEndO6sWiNBdkR6-K-XJx6Tr1C_D6pJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+3rd+International+Conference+on+Informatics+and+Computational+Sciences+%28ICICoS%29&rft.atitle=Denoising+Convolutional+Variational+Autoencoders-Based+Feature+Learning+for+Automatic+Detection+of+Plant+Diseases&rft.au=Zilvan%2C+Vicky&rft.au=Ramdan%2C+Ade&rft.au=Suryawati%2C+Endang&rft.au=Kusumo%2C+R.+Budiarianto+S.&rft.date=2019-10-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICICoS48119.2019.8982494&rft.externalDocID=8982494