Stacked Denoising Autoencoder network for short-term prediction of electrical Algerian load

Short-term load forecasting is a topic of considerable interest; it ensures the balance between the production and consumption one day ahead. In this paper, time series models have been developed to provide an efficient forecast for electricity consumption in Algeria using Deep Neural Networks in th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Control, Decision and Information Technologies (Online) Ročník 1; s. 189 - 194
Hlavní autoři: Hiba, Chelabi, Tarek, Khadir Mohamed, Belkacem, Chikhaoui
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2020
Témata:
ISSN:2576-3555
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Short-term load forecasting is a topic of considerable interest; it ensures the balance between the production and consumption one day ahead. In this paper, time series models have been developed to provide an efficient forecast for electricity consumption in Algeria using Deep Neural Networks in the form of Stacked Denoising Autoencoder (SDAE) and a regular Multilayer Perceptron (MLP) as a benchmark model. The obtained models are established and evaluated using the hourly temperature and electricity consumption data provided by the Algerian National Electricity and Gas Company (SONELGAZ). Convincing forecasting results for the Algerian national load were found and conclusions drawn.
AbstractList Short-term load forecasting is a topic of considerable interest; it ensures the balance between the production and consumption one day ahead. In this paper, time series models have been developed to provide an efficient forecast for electricity consumption in Algeria using Deep Neural Networks in the form of Stacked Denoising Autoencoder (SDAE) and a regular Multilayer Perceptron (MLP) as a benchmark model. The obtained models are established and evaluated using the hourly temperature and electricity consumption data provided by the Algerian National Electricity and Gas Company (SONELGAZ). Convincing forecasting results for the Algerian national load were found and conclusions drawn.
Author Tarek, Khadir Mohamed
Belkacem, Chikhaoui
Hiba, Chelabi
Author_xml – sequence: 1
  givenname: Chelabi
  surname: Hiba
  fullname: Hiba, Chelabi
  email: chelabi@labged.net
  organization: Université Badji Mokhtar Annaba,Laboratoire de Gestion Electronique de Documents,23000
– sequence: 2
  givenname: Khadir Mohamed
  surname: Tarek
  fullname: Tarek, Khadir Mohamed
  email: khadir@labged.net
  organization: Université Badji Mokhtar Annaba,Laboratoire de Gestion Electronique de Documents,23000
– sequence: 3
  givenname: Chikhaoui
  surname: Belkacem
  fullname: Belkacem, Chikhaoui
  email: belkacem.chikhaoui@teluq.ca
  organization: Technologie Université TÉLUQ 5800,LICEF Research Institute,Département Science,H2S 3L5
BookMark eNotkMtOQjEUAKvRRES-wIX9gYunp7fQLgn4ICFxIa5ckNKeYuXSkt4a499rIqtZTDKLuWYXKSdi7E7AWAgw9_O8WK5bY0CNERDGBidSKzhjIzPVYopaKKOkOWcDVNNJI5VSV2zU958AIIUBQByw99dq3Z48X1DKsY9px2dfNVNy2VPhiep3LnsecuH9Ry61qVQO_FjIR1djTjwHTh25WqKzHZ91OyrRJt5l62_YZbBdT6MTh-zt8WE9f25WL0_L-WzVRARZG-OtCoq8Vm0blJFChWBMQIvoWyArtHQWPPxpGyQo3U62VqIDvUUKSHLIbv-7kYg2xxIPtvxsTjvkL3u8V-c
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CoDIT49905.2020.9263850
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781728159539
1728159539
EISSN 2576-3555
EndPage 194
ExternalDocumentID 9263850
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-9da5f5ed8544f59315ff99f2a22d40ea183ca0d0544af305846ba32c08b2ef2e3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000635651400033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-9da5f5ed8544f59315ff99f2a22d40ea183ca0d0544af305846ba32c08b2ef2e3
PageCount 6
ParticipantIDs ieee_primary_9263850
PublicationCentury 2000
PublicationDate 2020-June-29
PublicationDateYYYYMMDD 2020-06-29
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June-29
  day: 29
PublicationDecade 2020
PublicationTitle International Conference on Control, Decision and Information Technologies (Online)
PublicationTitleAbbrev CoDIT
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190022
Score 1.7411001
Snippet Short-term load forecasting is a topic of considerable interest; it ensures the balance between the production and consumption one day ahead. In this paper,...
SourceID ieee
SourceType Publisher
StartPage 189
SubjectTerms autoregressive variable
Biological system modeling
electricity consumption
Forecasting
Load modeling
MLP
Neural networks
Predictive models
SDAE
short-term load forecasting
Temperature distribution
time series
Time series analysis
Title Stacked Denoising Autoencoder network for short-term prediction of electrical Algerian load
URI https://ieeexplore.ieee.org/document/9263850
Volume 1
WOSCitedRecordID wos000635651400033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8eCpaiu-2YNH0243SZM9lmpRkNJDhYKHstnd0ULJljb19zuTxIrgxVtY8oCd-TLfzM6DsbtQaNkfAASJMDKIslQhpHSIXooDZBvKGCi7678kk0k6n6tpg93va2Gcc2XymevSZXmWb73ZUaispyRqCznoB0mSVLVa-3gKqhLZozqFqy9Ub-QfnmdI6EWMbqAU3frpX2NUSisybv3v-8es81OOx6d7Q3PCGi4_Za3veQy8hmebvSFzRFBa_uByv6QgAB_uCk-tKi3el1cZ3xxpKt9-IO0O6LfM1xs6qyH5cA-8GotDkuPD1TupZ85XXtsOex0_zkZPQT08IVhKERaBsjqG2Nk0jiKIVdiPAZQCqaW0kXAaoWy0sMjYIg0IeuQhmQ6lEWkmHUgXnrFm7nN3zjhCPoVsIEVG_M4lqRmAynAB34veNVywNu3VYl31x1jU23T59_IVOyJxULqVVNesWWx27oYdms9iud3clkL9Aj_Wo9o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4QNNETKhjf7sGjhe22he6RgAQiEg6YkHgg230oCekSKP5-Z9uKMfHirdm0TbMzX-eb2XkAPARUML9tjNehknlhEnOElAjQS9EG2QaX0uTd9cedySSez_m0Ao_7WhitdZ58ppvuMj_LV1buXKisxRlqi3PQD6IwZH5RrbWPqKAyOYtUJnH5lLd6tj-aIaWnETqCjDbL538NUsntyKD2vy84gcZPQR6Z7k3NKVR0ega174kMpARoHd6QOyIsFenr1C5dGIB0d5l1zSoV3pcWOd8EiSrZfiDx9tyPmaw37rTGSYhYQ4rBOE52pLt6dwqakpUVqgGvg6dZb-iV4xO8JaNB5nElIhNpFeNmmYgHfmQM54YJxlRItUAwS0EVcrZQGIQ9MpFEBEzSOGHaMB2cQzW1qb4AgqCPTdJmNHEMT3di2TY8wQV8L_rX5hLqbq8W66JDxqLcpqu_l-_haDh7GS_Go8nzNRw70bjkK8ZvoJptdvoWDuVnttxu7nIBfwHyf6ch
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=Stacked+Denoising+Autoencoder+network+for+short-term+prediction+of+electrical+Algerian+load&rft.au=Hiba%2C+Chelabi&rft.au=Tarek%2C+Khadir+Mohamed&rft.au=Belkacem%2C+Chikhaoui&rft.date=2020-06-29&rft.pub=IEEE&rft.eissn=2576-3555&rft.volume=1&rft.spage=189&rft.epage=194&rft_id=info:doi/10.1109%2FCoDIT49905.2020.9263850&rft.externalDocID=9263850