SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition
Scene text recognition is a hot research topic in computer vision. Recently, many recognition methods based on the encoder-decoder framework have been proposed, and they can handle scene texts of perspective distortion and curve shape. Nevertheless, they still face lots of challenges like image blur...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 13525 - 13534 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2020
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Scene text recognition is a hot research topic in computer vision. Recently, many recognition methods based on the encoder-decoder framework have been proposed, and they can handle scene texts of perspective distortion and curve shape. Nevertheless, they still face lots of challenges like image blur, uneven illumination, and incomplete characters. We argue that most encoder-decoder methods are based on local visual features without explicit global semantic information. In this work, we propose a semantics enhanced encoder-decoder framework to robustly recognize low-quality scene texts. The semantic information is used both in the encoder module for supervision and in the decoder module for initializing. In particular, the state-of-the-art ASTER method is integrated into the proposed framework as an exemplar. Extensive experiments demonstrate that the proposed framework is more robust for low-quality text images, and achieves state-of-the-art results on several benchmark datasets. The source code will be available. |
|---|---|
| AbstractList | Scene text recognition is a hot research topic in computer vision. Recently, many recognition methods based on the encoder-decoder framework have been proposed, and they can handle scene texts of perspective distortion and curve shape. Nevertheless, they still face lots of challenges like image blur, uneven illumination, and incomplete characters. We argue that most encoder-decoder methods are based on local visual features without explicit global semantic information. In this work, we propose a semantics enhanced encoder-decoder framework to robustly recognize low-quality scene texts. The semantic information is used both in the encoder module for supervision and in the decoder module for initializing. In particular, the state-of-the-art ASTER method is integrated into the proposed framework as an exemplar. Extensive experiments demonstrate that the proposed framework is more robust for low-quality text images, and achieves state-of-the-art results on several benchmark datasets. The source code will be available. |
| Author | Yang, Dongbao Zhou, Yucan Wang, Weiping Qiao, Zhi Zhou, Yu |
| Author_xml | – sequence: 1 givenname: Zhi surname: Qiao fullname: Qiao, Zhi organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Yu surname: Zhou fullname: Zhou, Yu organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Dongbao surname: Yang fullname: Yang, Dongbao organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Yucan surname: Zhou fullname: Zhou, Yucan organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Weiping surname: Wang fullname: Wang, Weiping organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China |
| BookMark | eNotjM1OAjEURqvRRESeQBd9gcF7205_3BkY1ASjAXRLSnuro9IxM5Ogby9RFyfnLL58p-woN5kYu0AYI4K7nDw_LpTQAGMBAsaAslQHbOSMRSP2oLblIRsgaFloh-6EjbruDQCkQNTODtj9sqqmV3xJW5_7OnS8yq8-B4r7CE2ktpjSr_ms9VvaNe07T03Ll4Ey8RV99XyxH7zkuq-bfMaOk__oaPTvIXuaVavJbTF_uLmbXM-LWoDsCxeNjUolQSkpFUUgC-SNDhhTNJ6MdjJomxSVSCoiqmCl3ziBbqM2HuSQnf_91kS0_mzrrW-_1w5LI7WQPzDWUQs |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR42600.2020.01354 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728171685 1728171687 |
| EISSN | 1063-6919 |
| EndPage | 13534 |
| ExternalDocumentID | 9157362 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-9d78d44f2eff44d2ce80ea76c1dfd7ae7693c68f4e51e4d114c83ab9219b4ba03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 219 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001309199906042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:30:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-9d78d44f2eff44d2ce80ea76c1dfd7ae7693c68f4e51e4d114c83ab9219b4ba03 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9157362 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jun |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-Jun |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.600786 |
| Snippet | Scene text recognition is a hot research topic in computer vision. Recently, many recognition methods based on the encoder-decoder framework have been... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 13525 |
| SubjectTerms | Decoding Feature extraction Image recognition Semantics Task analysis Text recognition Visualization |
| Title | SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition |
| URI | https://ieeexplore.ieee.org/document/9157362 |
| WOSCitedRecordID | wos001309199906042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27bsIwFLUo6tCJtlD1LQ8dG3ASx4-uENShRQhoxYZi-1plaEA8-v21TYClSydbHhLpWr4P-5x7EHryTdeU9bByoBBRzXTkwojbkNjEzOpEWBVUS974YCCmUzmsoecDFwYAAvgM2n4a3vLNQm_9VVlHxhkPDveEc7bjah3uU1JXyTApKnZcTGSn-zkchf7rrgpMSNvlOqHn_1FDJYSQfuN_Pz9HrSMXDw8PUeYC1aC8RI0qecTV0Vw30fs4z3sveAzfzlZzvcZ5-RVe993E89ZXUQ_CiPt7PBZ2Cav7gvN2eOJ8NB7twUSLsoU--vmk-xpVWgnRPCHpJpKGC0OpTcBaSk2iQRAoONOxsYYX4CUPNROWQhYDNa4K0iItlHQOS1FVkPQK1ctFCdcIW5l6VXTtSjVNCxBKJZLolCmaWZFZcoOa3jqz5a4dxqwyzO3fy3fozJt_h666R_XNagsP6FT_bObr1WPYw18pVpz1 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ImugJFYzf9uDRQbd1W-sVRjACIYCGG1nb17iDw_Dh329bBly8eFqzw5a8l76P9vd7P4Se7NA1oS2sHCh4VMbSM2nEOMRXfqxlwLRwqiX9ZDhksxkfVdDzngsDAA58Bk27dHf5aiE39qisxf0ocQH3KKI0IFu21v5EJTS9TMxZyY_zCW-1P0ZjN4Hd9IEBaZpqx039P6iouCTSrf3v92eocWDj4dE-z5yjChQXqFaWj7jcnKs6GkzStPOCJ_BlrJXLFU6LT3e_bxaWub70OuCeuLtDZGFTspovmHiHpyZK4_EOTrQoGui9m07bPa9US_DygIRrj6uEKUp1AFpTqgIJjECWxNJXWiUZWNFDGTNNIfKBKtMHSRZmgpuQJajISHiJqsWigCuENQ-tLro0zZqkGTAhAk5kGAsaaRZpco3q1jrz7-1AjHlpmJu_Xz-ik9500J_3X4dvt-jUumKLtbpD1fVyA_foWP6s89XywfnzF4OGoDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=SEED%3A+Semantics+Enhanced+Encoder-Decoder+Framework+for+Scene+Text+Recognition&rft.au=Qiao%2C+Zhi&rft.au=Zhou%2C+Yu&rft.au=Yang%2C+Dongbao&rft.au=Zhou%2C+Yucan&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=13525&rft.epage=13534&rft_id=info:doi/10.1109%2FCVPR42600.2020.01354&rft.externalDocID=9157362 |