Automatic Isolated Arabic Speech Recognition and Its Transformation into Signs

In this technological era, providing a decent social integration of the mute communities or for the people with special needs still stands as a challenge. Currently, Sign Language (SL) is the main tool of communication between literate mute communities. About 18 million of the mute community is from...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP) s. 148 - 152
Hlavní autoři: Qaisar, Saeed Mian, Alhassani, Bashaier, Alharbi, Ozuf
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this technological era, providing a decent social integration of the mute communities or for the people with special needs still stands as a challenge. Currently, Sign Language (SL) is the main tool of communication between literate mute communities. About 18 million of the mute community is from the Arabic world [1]. In this framework, this work focuses on the design and development of an effective approach for automatic isolated Arabic speech based message recognition. The objective is to achieve an effective solution with a high level of precision. It is realizable by smartly using the hybrid features extraction and the robust classification techniques. The incoming speech segment is enhanced by the application of appropriate pre-conditioning. The Mel-Frequency Cepstral Coefficients (MFCCs) and the Perceptive Linear Prediction Coding Coefficients (PLPCC) are extracted from the enhanced speech segment. Later specifically designed voting based robust classifier issued to compare these extracted features with the reference templates. The comparison outcomes are the basis of classification decisions. The classification decision is transformed into systematic visual signs. The system functionality is tested with the help of a prototype realization. An average subject dependent Arabic isolated speech recognition accuracy of 92.6% is achieved.
AbstractList In this technological era, providing a decent social integration of the mute communities or for the people with special needs still stands as a challenge. Currently, Sign Language (SL) is the main tool of communication between literate mute communities. About 18 million of the mute community is from the Arabic world [1]. In this framework, this work focuses on the design and development of an effective approach for automatic isolated Arabic speech based message recognition. The objective is to achieve an effective solution with a high level of precision. It is realizable by smartly using the hybrid features extraction and the robust classification techniques. The incoming speech segment is enhanced by the application of appropriate pre-conditioning. The Mel-Frequency Cepstral Coefficients (MFCCs) and the Perceptive Linear Prediction Coding Coefficients (PLPCC) are extracted from the enhanced speech segment. Later specifically designed voting based robust classifier issued to compare these extracted features with the reference templates. The comparison outcomes are the basis of classification decisions. The classification decision is transformed into systematic visual signs. The system functionality is tested with the help of a prototype realization. An average subject dependent Arabic isolated speech recognition accuracy of 92.6% is achieved.
Author Alhassani, Bashaier
Alharbi, Ozuf
Qaisar, Saeed Mian
Author_xml – sequence: 1
  givenname: Saeed Mian
  surname: Qaisar
  fullname: Qaisar, Saeed Mian
  email: sqaisar@effatuniversity.edu.sa
  organization: College of Engineering, Effat University, Jeddah, KSA
– sequence: 2
  givenname: Bashaier
  surname: Alhassani
  fullname: Alhassani, Bashaier
  email: bhalhassani@effat.edu.sa
  organization: College of Engineering, Effat University, Jeddah, KSA
– sequence: 3
  givenname: Ozuf
  surname: Alharbi
  fullname: Alharbi, Ozuf
  email: omalharbi@effat.edu.sa
  organization: College of Engineering, Effat University, Jeddah, KSA
BookMark eNotj1FLwzAUhSPog5v-AkHyBzrvbdo0eSxlamE4WefzSNObGdiS0cYH_72T7elwPjgfnBm7DTEQY88IC0TQL137uVk3y65b5IB6oZRUspQ3bIZVrlBICXjPPuqfFI8mecvbKR5MooHXo-nPvTsR2W--IRv3wScfAzdh4G2a-HY0YXJx_B-esQ8p8s7vw_TA7pw5TPR4zTn7el1um_dstX5rm3qV-RxEynRJqIrB2rzoK2VzMA6cBmeoLB0VVQUCFVptAQuRD70B3QvUUIEsew2FmLOni9cT0e40-qMZf3fXi-IPewZMFA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SIPROCESS.2019.8868656
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728136601
9781728136608
EndPage 152
ExternalDocumentID 8868656
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-95e184dcc24b78c20af0f90fae55fe47703181c9c01432dba09b31907065b9043
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557898200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:18 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-95e184dcc24b78c20af0f90fae55fe47703181c9c01432dba09b31907065b9043
PageCount 5
ParticipantIDs ieee_primary_8868656
PublicationCentury 2000
PublicationDate 2019-July
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July
PublicationDecade 2010
PublicationTitle 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP)
PublicationTitleAbbrev SIPROCESS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6990982
Snippet In this technological era, providing a decent social integration of the mute communities or for the people with special needs still stands as a challenge....
SourceID ieee
SourceType Publisher
StartPage 148
SubjectTerms arabic sign language
arabic speech recognition
Assistive technology
Feature extraction
features extraction
Gesture recognition
Linear predictive coding
Mel frequency cepstral coefficient
mel-frequency cepstral coefficients (MFCC)
perceptual linear predictive coding coefficients (PLPCC)
Speech recognition
Title Automatic Isolated Arabic Speech Recognition and Its Transformation into Signs
URI https://ieeexplore.ieee.org/document/8868656
WOSCitedRecordID wos000557898200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6AePCkBozv9ODRle7S7eNIiEQSgwTQcCNtd6p76ZJl8ffbLoiaePHWNk3aTGc6XzsvhG4ZDWqbsUhqnkXUQ35_DzKIMhmbXpxqk9Q1ll6f-HgsFgs5aaC7fSwMANTOZ3AfmrUtPyvMJnyVdYVgwuOPJmpyzraxWrug35jI7mw0mT4P_LaDw1bggHryr6optdIYHv1vuWPU-Y6-w5O9XjlBDXBtNO5vqqJOr4pHnl08Qsxwv1Ta92crAPOOp1-uQIXDymV4VK3x_Acs9cO5qwo8y9_cuoNehg_zwWO0q4UQ5QnpVZFMwb_FMmMSqrkwCVGWWEmsgjS1QHlIQy9iI03I15dkWhGpvXSRYMXUktDeKWq5wsEZwuCRqpdKZQEsjYkS3EibWAqEKs6An6N2oMVytU13sdyR4eLv4Ut0GMi99WC9Qq2q3MA1OjAfVb4ub-oz-gQ515R1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmuhJDRjf9uDRle7SffRIiISNuBJAw410u1PdS5fA4u-3XRA18eKtbZq0mc50vnZeALcBs2o7CByehpnDDOQ392CATsZd2Xb9VHpVjaXXQZgk0XTKhzW428bCIGLlfIb3tlnZ8rNCruxXWSuKgsjgjx3Y9Rnz6DpaaxP261LeGsfD0XPXbNy6bFkeqKb_qptSqY3e4f8WPILmd_wdGW41yzHUUDcg6azKokqwSmLDMAYjZqSzEKnpj-eI8p2MvpyBCk2EzkhcLsnkBzA1w7kuCzLO3_SyCS-9h0m372yqITi5R9ulw300r7FMSo-lYSQ9KhRVnCqBvq-QhTYRfeRKLm3GPi9LBeWpkS9q7Zgpp6x9AnVdaDwFggarGrkUClExl4oolFx5iiFlIgwwPIOGpcVsvk54MduQ4fzv4RvY70-eBrNBnDxewIEl_dqf9RLq5WKFV7AnP8p8ubiuzusTII-XvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+4th+International+Conference+on+Signal+and+Image+Processing+%28ICSIP%29&rft.atitle=Automatic+Isolated+Arabic+Speech+Recognition+and+Its+Transformation+into+Signs&rft.au=Qaisar%2C+Saeed+Mian&rft.au=Alhassani%2C+Bashaier&rft.au=Alharbi%2C+Ozuf&rft.date=2019-07-01&rft.pub=IEEE&rft.spage=148&rft.epage=152&rft_id=info:doi/10.1109%2FSIPROCESS.2019.8868656&rft.externalDocID=8868656