Intrusion detection on robot cameras using spatio-temporal autoencoders: A self-driving car application

Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important fields where it is being used is the self-driving cars industry. However, this framework is far from being totally secure, and the existing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Vehicular Technology Conference s. 1 - 5
Hlavní autoři: Amrouche, Faouzi, Lagraa, Sofiane, Frank, Raphael, State, Radu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2020
Témata:
ISSN:2577-2465
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important fields where it is being used is the self-driving cars industry. However, this framework is far from being totally secure, and the existing security breaches do not have robust solutions. In this paper we focus on the camera vulnerabilities, as it is often the most important source for the environment discovery and the decision-making process. We propose an unsupervised anomaly detection tool for detecting suspicious frames incoming from camera flows. Our solution is based on spatio-temporal autoencoders used to truthfully reconstruct the camera frames and detect abnormal ones by measuring the difference with the input. We test our approach on a real-word dataset, i.e. flows coming from embedded cameras of self-driving cars. Our solution outperforms the existing works on different scenarios.
AbstractList Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important fields where it is being used is the self-driving cars industry. However, this framework is far from being totally secure, and the existing security breaches do not have robust solutions. In this paper we focus on the camera vulnerabilities, as it is often the most important source for the environment discovery and the decision-making process. We propose an unsupervised anomaly detection tool for detecting suspicious frames incoming from camera flows. Our solution is based on spatio-temporal autoencoders used to truthfully reconstruct the camera frames and detect abnormal ones by measuring the difference with the input. We test our approach on a real-word dataset, i.e. flows coming from embedded cameras of self-driving cars. Our solution outperforms the existing works on different scenarios.
Author Amrouche, Faouzi
State, Radu
Frank, Raphael
Lagraa, Sofiane
Author_xml – sequence: 1
  givenname: Faouzi
  surname: Amrouche
  fullname: Amrouche, Faouzi
  organization: Reliability and Trust (SnT) University of Luxembourg,Interdisciplinary Centre for Security,29 Avenue J.F Kennedy,Luxembourg,L-1855
– sequence: 2
  givenname: Sofiane
  surname: Lagraa
  fullname: Lagraa, Sofiane
  organization: Reliability and Trust (SnT) University of Luxembourg,Interdisciplinary Centre for Security,29 Avenue J.F Kennedy,Luxembourg,L-1855
– sequence: 3
  givenname: Raphael
  surname: Frank
  fullname: Frank, Raphael
  organization: Reliability and Trust (SnT) University of Luxembourg,Interdisciplinary Centre for Security,29 Avenue J.F Kennedy,Luxembourg,L-1855
– sequence: 4
  givenname: Radu
  surname: State
  fullname: State, Radu
  organization: Reliability and Trust (SnT) University of Luxembourg,Interdisciplinary Centre for Security,29 Avenue J.F Kennedy,Luxembourg,L-1855
BookMark eNotkEtLAzEUhaMo2Nb-AjdZupma3Lwm7krxUSi4cHBbMklaRqbJkKSC_94ZLFy4l3PPOYtvjm5CDB6hR0pWlBL99NVsgACpPofUhSOvhSarSVhpCppLeoWWWtVUQU0FEMWu0QyEUhVwKe7QPOdvQgilEmbouA0lnXMXA3a-eFuma5wU21iwNSefTMajIRxxHsz4roo_DTGZHptziT7Y6HzKz3iNs-8PlUvdz2S2JmEzDH1np1C4R7cH02e_vOwFal5fms17tft4227Wu6oDwkqlBXWWC6YFtJZyDQqAHIzWkjspFK9bIYxtnSU1s9S1xkgvuWHMSWiZYwv08F_bee_3I56TSb_7Cxb2B726XkU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/VTC2020-Spring48590.2020.9129461
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728152073
1728152070
EISSN 2577-2465
EndPage 5
ExternalDocumentID 9129461
Genre orig-research
GroupedDBID -~X
29I
6IE
6IH
AFFNX
AI.
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
RNS
VH1
ID FETCH-LOGICAL-i203t-951dc453952bc14927220fa9964d65748b55acbdc083c1dbaa6e64a33d62b3d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001455072000472&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:34:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-951dc453952bc14927220fa9964d65748b55acbdc083c1dbaa6e64a33d62b3d3
PageCount 5
ParticipantIDs ieee_primary_9129461
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle IEEE Vehicular Technology Conference
PublicationTitleAbbrev VTC2020-Spring
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001162
Score 2.1403327
Snippet Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Autonomous automobiles
Cameras
Image reconstruction
Robot vision systems
Security
Training
Title Intrusion detection on robot cameras using spatio-temporal autoencoders: A self-driving car application
URI https://ieeexplore.ieee.org/document/9129461
WOSCitedRecordID wos001455072000472&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5ziOjFj038JgcPHsyWJWnSeJPhUJCxw5DdRr46BqOVtvP3m2RlTvAi9BACDeUNzfuR53leAO6dVoxjlyJqUoNYJjBS2Gb-v9KZ46nzIW3sWvIuxuN0NpOTFnjccmGccxF85nphGO_ybWHWoVTWl945sZDr7AnBN1yt7ak7GHByAB4aDc3-x3RIQma0KY-xNJG4FyZ6zRq_mqlEXzI6_t9XnIDuDykPTrbu5hS0XH4Gjnb0BDtg8ZYHDoU3NbSujiCrHPqnLHRRQ6NCAaqCAeq-gFWEUqNGmmoF1bougqhlADY_wWdYuVWGbLkMBQf_agl3rrq7YDp6mQ5fUdNJAS0JpjXyYZQ1LKEyIdr4nIgIQnCmfK7DLE8ES3WSKKOt8QGZGVitFHecKUotJ5paeg7aeZG7i0Dxlj4k1JRbmzAaxAONkE5IRbAfYH4JOsFi88-NVsa8MdbV39PX4DDuUgQQ3oC2t5G7Bfvmq15W5V3c4G-1Zaik
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA5jio-Ljym-zcGDB7tlebX1JsOx4Rw7FNlt5NUxGK20nX-_SVbmBC9CDyHQUH6h-T3yfd8PgAcjBeXIRAFRkQpoGqJAIJ3a_0qmhkfGhrS-a8koHI-j6TSeNMDThgtjjPHgM9N2Q3-Xr3O1cqWyTmydE3W5zg6jFKM1W2tz7na7HO-Bx1pFs_OR9LDLjdYFMhqxGLXdRLte5Vc7Fe9N-kf_-45jcPZDy4OTjcM5AQ2TnYLDLUXBFpgPM8eisMaG2lQeZpVB-xS5zCuohCtBldCB3eew9GDqoBanWkKxqnIna-mgzc_wBZZmmQa6WLiSg321gFuX3Wcg6b8mvUFQ91IIFhiRKrCBlFaUkZhhqWxWhEOMUSpstkM1ZyGNJGNCSa1sSKa6WgrBDaeCEM2xJJqcg2aWZ-bCkbxjGxRKwrVmlDj5QBXGJowFRnaA-CVoOYvNPtdqGbPaWFd_T9-D_UHyPpqNhuO3a3Dgd8zDCW9A09rL3IJd9VUtyuLOb_Y3p4er6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Vehicular+Technology+Conference&rft.atitle=Intrusion+detection+on+robot+cameras+using+spatio-temporal+autoencoders%3A+A+self-driving+car+application&rft.au=Amrouche%2C+Faouzi&rft.au=Lagraa%2C+Sofiane&rft.au=Frank%2C+Raphael&rft.au=State%2C+Radu&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2577-2465&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVTC2020-Spring48590.2020.9129461&rft.externalDocID=9129461