Ship Detection in SAR Images Using Convolutional Variational Autoencoders

We propose an unsupervised framework for ship detection in SAR image data, based on anomaly detection. We first learn representations of the SAR images with a convolutional Variational Autoencoder. Aftwerwards, we perform anomaly detection based on those representations, with a clustering algorithm....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Geoscience and Remote Sensing Symposium proceedings s. 2503 - 2506
Hlavní autoři: Ferreira, Nuno, Silveira, Margarida
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 26.09.2020
Témata:
ISSN:2153-7003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose an unsupervised framework for ship detection in SAR image data, based on anomaly detection. We first learn representations of the SAR images with a convolutional Variational Autoencoder. Aftwerwards, we perform anomaly detection based on those representations, with a clustering algorithm. Experimental results with real SAR data are provided to illustrate the performance of the proposed algorithm.
ISSN:2153-7003
DOI:10.1109/IGARSS39084.2020.9324389