Improving Multiple Time Series Forecasting with Data Stream Mining Algorithms
This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in multiple time series prediction problems. Although some multiple time series algorithms perform surprisingly well in a variety of domains, i...
Uloženo v:
| Vydáno v: | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics s. 1060 - 1067 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
11.10.2020
|
| Témata: | |
| ISSN: | 2577-1655 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in multiple time series prediction problems. Although some multiple time series algorithms perform surprisingly well in a variety of domains, it is well-known that no one is dominant for every existent domain. Therefore, we developed a meta-technique based on data stream mining and static ensemble selection strategy and evaluated its forecasting goodness-of-fit in time series datasets from M3 and M4 competitions. After training different regression models, we show how the combination of auto.arima and AdaGrad leads to improved forecasting rates, thus surpassing the results of state-of-art algorithms. |
|---|---|
| AbstractList | This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in multiple time series prediction problems. Although some multiple time series algorithms perform surprisingly well in a variety of domains, it is well-known that no one is dominant for every existent domain. Therefore, we developed a meta-technique based on data stream mining and static ensemble selection strategy and evaluated its forecasting goodness-of-fit in time series datasets from M3 and M4 competitions. After training different regression models, we show how the combination of auto.arima and AdaGrad leads to improved forecasting rates, thus surpassing the results of state-of-art algorithms. |
| Author | Enembreck, Fabricio Mochinski, Marcos Alberto Paul Barddal, Jean |
| Author_xml | – sequence: 1 givenname: Marcos Alberto surname: Mochinski fullname: Mochinski, Marcos Alberto email: mmochinski@ppgia.pucpr.br organization: Pontifícia Universidade Católica do Paraná, PUCPR,Graduate Program on Informatics, PPGIa,Escola Politécnica,Curitiba,Brazil – sequence: 2 givenname: Jean surname: Paul Barddal fullname: Paul Barddal, Jean email: jean.barddal@ppgia.pucpr.br organization: Pontifícia Universidade Católica do Paraná, PUCPR,Graduate Program on Informatics, PPGIa,Escola Politécnica,Curitiba,Brazil – sequence: 3 givenname: Fabricio surname: Enembreck fullname: Enembreck, Fabricio email: fabricio@ppgia.pucpr.br organization: Pontifícia Universidade Católica do Paraná, PUCPR,Graduate Program on Informatics, PPGIa,Escola Politécnica,Curitiba,Brazil |
| BookMark | eNotj91KwzAcxaMouM09gQh5gdYkzVcvR3U6WPGi83qk2b8z0i_SqPj2y3BXB845HM5vjm76oQeEHilJKSX5U1UWnOVKpIwwkuZMZ0TkV2iZK00V01QLJtk1mjGhVEKlEHdoPk1fJLY51TNUbrrRDz-uP-Lyuw1ubAHvXAe4Au9gwuvBgzVTOBd-XfjEzyYYXAUPpsOl68_-qj0OPmbddI9uG9NOsLzoAn2sX3bFW7J9f90Uq23iGMlCom3T8NrYGjLLhVRWQoSQnIMxJCIcpNEcrGxqzQ_KRCpa57TJoImnbZxYoIf_XQcA-9G7zvi__YU-OwFsilFO |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/SMC42975.2020.9283059 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISBN | 9781728185262 1728185262 |
| EISSN | 2577-1655 |
| EndPage | 1067 |
| ExternalDocumentID | 9283059 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-8cff4bacbe3c4567c6e429644eaa0283d6a84ec6fb84d7a9281b91f3ef041c203 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687430601014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:33:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-8cff4bacbe3c4567c6e429644eaa0283d6a84ec6fb84d7a9281b91f3ef041c203 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9283059 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Oct.-11 |
| PublicationDateYYYYMMDD | 2020-10-11 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct.-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics |
| PublicationTitleAbbrev | SMC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020418 |
| Score | 2.1433556 |
| Snippet | This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1060 |
| SubjectTerms | Data mining data stream mining algorithms Forecasting hybrid ensemble multiple time series Prediction algorithms Real-time systems Social networking (online) Time series analysis Time series forecasting Training |
| Title | Improving Multiple Time Series Forecasting with Data Stream Mining Algorithms |
| URI | https://ieeexplore.ieee.org/document/9283059 |
| WOSCitedRecordID | wos000687430601014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4NedB_iNzl4ULBbu2RNepTp8NIxUGG3kaSvMnCbtJ1_v3ldqQpevJU2bekLTd7X7_cDuE4U9yMU2jMm0C5AGQlPac6JCNIadP49N6IUm5DTqZrPo1kD7mosDCKWzWfYp8Oylp9s7JZSZYOI2KpGUROaUoY7rFYdXPkiUBVCJ_CjwXM8FgQadRHg0O9XN_5SUCk3kMnh_159BL1vJB6b1XtMGxq47sDBDxLBDrSr3zNnNxWH9G0X4jpZwOKqZZAR2oNRNswNJUVOq3PqeWaUimUPutCMStR6xeJSNILdv79tMndtlffgdfL4Mn7yKuUEbzn0eeEpm6bCaGdtbp2HJG2IguqrArUmhyIJtRJow9QokUjtPi4wUZByTJ0ZrXvEMbTWmzWeAAtNKiXSusBDEaJSbggX2rdWSpVIfgpdstbiY0eOsagMdfb36XPYpwmhxT8ILqBVZFu8hD37WSzz7Kqc0S8pdKHJ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKagX3Yf4bQ4eFOzWNlmTHmU6Jq5j4ITdRpKmMnCbrJ1_v3ldqQpevJU0bckLzfv8vR_AdSyoGxomHaU8aR2UDnOEpBQbQWplrH1PFcvJJvhwKCaTcFSBuxILY4zJi89MCy_zXH681GsMlbVD7FbVCbdgu8OY727QWqV75TJPFBgdzw3bL1GXIWzU-oC-2yoe_cWhkquQ3sH_Pn4IzW8sHhmVWqYGFbOow_6PNoJ1qBU_aEpuii7Stw2IynABiYqiQYJ4D4LxMDsVOTm1TLHqmWAwljzITBJMUss5iXLaCHL__rZc2XvztAmvvcdxt-8U3AnOzHdp5gidJExJK2-qrY3EdWAYZliZkRJNijiQghkdJEqwmEu7OE-FXkJNYsWo7SuOoLpYLswxkEAlnBs8GWjAAiOEnUKZdLXmXMScnkADpTX92LTHmBaCOv17-Ap2--NoMB08DZ_PYA83B1WB551DNVutzQXs6M9slq4u8939AsLcpRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Improving+Multiple+Time+Series+Forecasting+with+Data+Stream+Mining+Algorithms&rft.au=Mochinski%2C+Marcos+Alberto&rft.au=Paul+Barddal%2C+Jean&rft.au=Enembreck%2C+Fabricio&rft.date=2020-10-11&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=1060&rft.epage=1067&rft_id=info:doi/10.1109%2FSMC42975.2020.9283059&rft.externalDocID=9283059 |