Improving Multiple Time Series Forecasting with Data Stream Mining Algorithms

This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in multiple time series prediction problems. Although some multiple time series algorithms perform surprisingly well in a variety of domains, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics S. 1060 - 1067
Hauptverfasser: Mochinski, Marcos Alberto, Paul Barddal, Jean, Enembreck, Fabricio
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 11.10.2020
Schlagworte:
ISSN:2577-1655
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in multiple time series prediction problems. Although some multiple time series algorithms perform surprisingly well in a variety of domains, it is well-known that no one is dominant for every existent domain. Therefore, we developed a meta-technique based on data stream mining and static ensemble selection strategy and evaluated its forecasting goodness-of-fit in time series datasets from M3 and M4 competitions. After training different regression models, we show how the combination of auto.arima and AdaGrad leads to improved forecasting rates, thus surpassing the results of state-of-art algorithms.
AbstractList This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in multiple time series prediction problems. Although some multiple time series algorithms perform surprisingly well in a variety of domains, it is well-known that no one is dominant for every existent domain. Therefore, we developed a meta-technique based on data stream mining and static ensemble selection strategy and evaluated its forecasting goodness-of-fit in time series datasets from M3 and M4 competitions. After training different regression models, we show how the combination of auto.arima and AdaGrad leads to improved forecasting rates, thus surpassing the results of state-of-art algorithms.
Author Enembreck, Fabricio
Mochinski, Marcos Alberto
Paul Barddal, Jean
Author_xml – sequence: 1
  givenname: Marcos Alberto
  surname: Mochinski
  fullname: Mochinski, Marcos Alberto
  email: mmochinski@ppgia.pucpr.br
  organization: Pontifícia Universidade Católica do Paraná, PUCPR,Graduate Program on Informatics, PPGIa,Escola Politécnica,Curitiba,Brazil
– sequence: 2
  givenname: Jean
  surname: Paul Barddal
  fullname: Paul Barddal, Jean
  email: jean.barddal@ppgia.pucpr.br
  organization: Pontifícia Universidade Católica do Paraná, PUCPR,Graduate Program on Informatics, PPGIa,Escola Politécnica,Curitiba,Brazil
– sequence: 3
  givenname: Fabricio
  surname: Enembreck
  fullname: Enembreck, Fabricio
  email: fabricio@ppgia.pucpr.br
  organization: Pontifícia Universidade Católica do Paraná, PUCPR,Graduate Program on Informatics, PPGIa,Escola Politécnica,Curitiba,Brazil
BookMark eNotj91KwzAcxaMouM09gQh5gdYkzVcvR3U6WPGi83qk2b8z0i_SqPj2y3BXB845HM5vjm76oQeEHilJKSX5U1UWnOVKpIwwkuZMZ0TkV2iZK00V01QLJtk1mjGhVEKlEHdoPk1fJLY51TNUbrrRDz-uP-Lyuw1ubAHvXAe4Au9gwuvBgzVTOBd-XfjEzyYYXAUPpsOl68_-qj0OPmbddI9uG9NOsLzoAn2sX3bFW7J9f90Uq23iGMlCom3T8NrYGjLLhVRWQoSQnIMxJCIcpNEcrGxqzQ_KRCpa57TJoImnbZxYoIf_XQcA-9G7zvi__YU-OwFsilFO
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC42975.2020.9283059
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 9781728185262
1728185262
EISSN 2577-1655
EndPage 1067
ExternalDocumentID 9283059
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-8cff4bacbe3c4567c6e429644eaa0283d6a84ec6fb84d7a9281b91f3ef041c203
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687430601014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-8cff4bacbe3c4567c6e429644eaa0283d6a84ec6fb84d7a9281b91f3ef041c203
PageCount 8
ParticipantIDs ieee_primary_9283059
PublicationCentury 2000
PublicationDate 2020-Oct.-11
PublicationDateYYYYMMDD 2020-10-11
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-11
  day: 11
PublicationDecade 2020
PublicationTitle Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev SMC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
Score 2.143251
Snippet This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in...
SourceID ieee
SourceType Publisher
StartPage 1060
SubjectTerms Data mining
data stream mining algorithms
Forecasting
hybrid ensemble
multiple time series
Prediction algorithms
Real-time systems
Social networking (online)
Time series analysis
Time series forecasting
Training
Title Improving Multiple Time Series Forecasting with Data Stream Mining Algorithms
URI https://ieeexplore.ieee.org/document/9283059
WOSCitedRecordID wos000687430601014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEv2of4Zg8eFEybNJvN7lGqxUtKQYXeyj6lYFtpUn-_O2mICl68hc1uws4w-5iZbz6A69ikPBFMBSw2SUCdkoEKnfV2JXFRTKTkO7KJdDLhs5mYNuCuxsJYa8vkM9vHxzKWb9Z6i66ygcBqVYloQjNN2Q6rVV-uQhrxCqEThWLwnI0ogkb9DXAY9quBvxhUyg1kfPi_Xx9B7xuJR6b1HtOGhl114OBHEcEOtCvzzMlNVUP6tgtZ7SwgWZUySBDtQdAb5rsiI6eWOeY8E3TFkgdZSIIharkkWUkaQe7f39Yb_26Z9-B1_Pgyegoq5oRgMQzjIuDaOaqkVjbW_oSUamYpxleplRIPFIZJTq1mTnFqUuknFykRudg6L0btP3EMrdV6ZU-AGKVELELqhImpFk5poZkQzjLlVcn0KXRRWvOPXXGMeSWos7-bz2EfFYKLfxRdQKvYbO0l7OnPYpFvrkqNfgHbUaLu
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQX3Yf4bR58ULBbu6Zp8yjTMXEdAyfsbSRpIgO3ydr595vrSlXwxbfQtAm5I73k7n73A7j2kzAKOJMO85PAoUYKR7pG230l8KcYCBFtyCbC4TCaTPioAnclFkZrnSef6RY281h-slRrdJW1OVarCvgWbAeUdtwNWqu8XrnUiwqMjufy9kvcpQgbtXfAjtsqPv3FoZKbkN7B_yY_hOY3Fo-MSitTg4pe1GH_RxnBOtSKDZqSm6KK9G0D4tJdQOIiaZAg3oOgP8y-ipycSqSY9UzQGUseRCYIBqnFnMQ5bQS5f39brmzfPG3Ca-9x3O07BXeCM-u4fuZEyhgqhZLaV_aMFCqmKUZYqRYCjxQJExHVihkZ0SQUdnGe5J7xtbFiVHaII6gulgt9DCSRkvvcpYYnPlXcSMUV49xoJq0ymTqBBkpr-rEpjzEtBHX69-Mr2O2P48F08DR8PoM9VA6aAs87h2q2WusL2FGf2SxdXeba_QKCzqY1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Improving+Multiple+Time+Series+Forecasting+with+Data+Stream+Mining+Algorithms&rft.au=Mochinski%2C+Marcos+Alberto&rft.au=Paul+Barddal%2C+Jean&rft.au=Enembreck%2C+Fabricio&rft.date=2020-10-11&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=1060&rft.epage=1067&rft_id=info:doi/10.1109%2FSMC42975.2020.9283059&rft.externalDocID=9283059