Moving Target Shadow Detection using Transformer in Video Sar
Video synthetic aperture radar (SAR) has been found to be very valuable for detecting and tracking moving targets and observing areas of interest. Shadows produced by target motion in sequential radar images can be used to detect targets themselves. Since existing deep learning shadow detection meth...
Saved in:
| Published in: | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 2614 - 2617 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
17.07.2022
|
| Subjects: | |
| ISSN: | 2153-7003 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Video synthetic aperture radar (SAR) has been found to be very valuable for detecting and tracking moving targets and observing areas of interest. Shadows produced by target motion in sequential radar images can be used to detect targets themselves. Since existing deep learning shadow detection methods often require many hand-designed components, in this paper, we propose a shadow detection method for video SAR moving target based on transformer, which is named Deformable Shadow-DETR. Deformable Shadow-DETR can better extract shadow features, and use the transformer encoder-decoder network to treat shadow detection as a direct set prediction problem, eliminating the need for cumbersome hand-designed components. Experiments on the real video SAR data published by the Sandia National Laboratories show that our proposed moving target shadow detection method can achieve excellent performance. |
|---|---|
| AbstractList | Video synthetic aperture radar (SAR) has been found to be very valuable for detecting and tracking moving targets and observing areas of interest. Shadows produced by target motion in sequential radar images can be used to detect targets themselves. Since existing deep learning shadow detection methods often require many hand-designed components, in this paper, we propose a shadow detection method for video SAR moving target based on transformer, which is named Deformable Shadow-DETR. Deformable Shadow-DETR can better extract shadow features, and use the transformer encoder-decoder network to treat shadow detection as a direct set prediction problem, eliminating the need for cumbersome hand-designed components. Experiments on the real video SAR data published by the Sandia National Laboratories show that our proposed moving target shadow detection method can achieve excellent performance. |
| Author | Zhou, Yuanyuan Shi, Jun Wang, Wei Zhang, Xiaoling Zhang, Tianwen Xie, Zhikun |
| Author_xml | – sequence: 1 givenname: Wei surname: Wang fullname: Wang, Wei organization: University of Electronic Science and Technology of China,Chengdu,P.R.China,611731 – sequence: 2 givenname: Yuanyuan surname: Zhou fullname: Zhou, Yuanyuan organization: Sichuan Aerospace Electronic Equipment Research Institute – sequence: 3 givenname: Zhikun surname: Xie fullname: Xie, Zhikun organization: University of Electronic Science and Technology of China,Chengdu,P.R.China,611731 – sequence: 4 givenname: Tianwen surname: Zhang fullname: Zhang, Tianwen organization: University of Electronic Science and Technology of China,Chengdu,P.R.China,611731 – sequence: 5 givenname: Jun surname: Shi fullname: Shi, Jun organization: University of Electronic Science and Technology of China,Chengdu,P.R.China,611731 – sequence: 6 givenname: Xiaoling surname: Zhang fullname: Zhang, Xiaoling organization: University of Electronic Science and Technology of China,Chengdu,P.R.China,611731 |
| BookMark | eNotj81KAzEYRaMo2NY-gZu8wIz5n2TholRbCxXBqW5LkvlSIzaRzKj49hbt4nIPXDhwx-gs5QQIYUpqSom5Xi1nT20rlOaiZoSx2mgtJCUnaGoaTZWSgjWGkVM0YlTyqiGEX6Bx378dQDNCRujmIX_FtMMbW3Yw4PbVdvkb38IAfog54c_-by029SGXPRQcE36JHWTc2nKJzoN972F67Al6Xtxt5vfV-nG5ms_WVWSED5X2TDljG3mIBW4d5cSJYBxVzgfgwnkdGuW5M8FSqY2wtAPGlJAeOtbxCbr690YA2H6UuLflZ3t8y38Bc1dMRQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IGARSS46834.2022.9884510 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISBN | 9781665427920 1665427922 |
| EISSN | 2153-7003 |
| EndPage | 2617 |
| ExternalDocumentID | 9884510 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-8c26b9a759a7ae3ab130b4f9b16bcfe34bc8f76c3b9fa15894a1de22645ced2d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920916602203&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-8c26b9a759a7ae3ab130b4f9b16bcfe34bc8f76c3b9fa15894a1de22645ced2d3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9884510 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-July-17 |
| PublicationDateYYYYMMDD | 2022-07-17 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-July-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
| PublicationTitleAbbrev | IGARSS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0038200 |
| Score | 1.8225561 |
| Snippet | Video synthetic aperture radar (SAR) has been found to be very valuable for detecting and tracking moving targets and observing areas of interest. Shadows... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2614 |
| SubjectTerms | Deep learning Feature extraction Laboratories moving target Radar detection Radar imaging shadow detection Target tracking transformer Transformers Video SAR |
| Title | Moving Target Shadow Detection using Transformer in Video Sar |
| URI | https://ieeexplore.ieee.org/document/9884510 |
| WOSCitedRecordID | wos000920916602203&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61KHjy0YpvcvDotvvIbpKDB1FbBS3FraW3kscs7mVX1q3ivzdJtxXBi4dASEhCZiAzmXxfBqELAToMgTCPQhybC4oWHlcW4y6EZLEgwnfp3qaPdDRisxkft9DlmgsDAA58Bj1bdW_5ulQLGyrrc8ZIbPlUG5QmS67W6tSNjCXzV0gdn_cfhtfPaUoSFtnASRj2mrG_kqg4GzLY-d_qu6j7Q8bD47WZ2UMtKPbR1tBl5P3qoKsnFxPAEwfpxumr0OUnvoXaYawKbIHtpnfln0KF8wJPcw0lTkXVRS-Du8nNvdfkRPDy0I9qj6kwkVzQ2BQBkZDGBkmScRkkUmUQEalYRhMVSZ6JIGaciECDZcvGyqhFRweoXZQFHCJMuA6M9-crDpyEIMzUMgOmAqDKugZHqGOFMH9bfnsxb_Z__HfzCdq2cvbcn5OnqF1XCzhDm-qjzt-rc6erb47ElaI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lKnry0Ypvc_DotvtIdpODB_HRFttS3Fp6K3nM4l52Zd0q_ns36UMELx4CISEJmYHMZPJ9GYSuBGjfB8KcCCitLihaOFwZjLsQklFBhGvTvU360XDIplM-qqHrNRcGACz4DFqmat_yda7mJlTW5owRavhUG5QQ312wtVbnblDZMneF1XF5u9e5fY5jErLAhE58v7Uc_SuNirUij7v_W38PNX_oeHi0NjT7qAbZAdrq2Jy8Xw10M7BRATy2oG4cvwqdf-J7KC3KKsMG2l71rjxUKHCa4UmqIcexKJro5fFhfNd1llkRnNR3g9Jhyg8lFxGtioBAyMoKSZJw6YVSJRAQqVgShSqQPBEeZZwIT4Phy1JVKUYHh6ie5RkcIUy49ir_z1UcOPFBVFPLBJjyIFLGOThGDSOE2dvi44vZcv8nfzdfou3ueNCf9XvDp1O0Y2Tu2B8oz1C9LOZwjjbVR5m-FxdWb9-Ihpjp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Moving+Target+Shadow+Detection+using+Transformer+in+Video+Sar&rft.au=Wang%2C+Wei&rft.au=Zhou%2C+Yuanyuan&rft.au=Xie%2C+Zhikun&rft.au=Zhang%2C+Tianwen&rft.date=2022-07-17&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=2614&rft.epage=2617&rft_id=info:doi/10.1109%2FIGARSS46834.2022.9884510&rft.externalDocID=9884510 |