Applications Of Feature Weighted Fuzzy C-Means Clustering And Genetic Algorithm Optimization For Load Identification In NILM Systems
An improved fuzzy clustering non-invasive load monitoring method based on genetic algorithm for feature weight optimization is proposed. The non-intrusive load monitoring research needs to extract the features of electrical appliance waveform data, which has the problems of large number of features...
Gespeichert in:
| Veröffentlicht in: | International Conference on Wavelet Analysis and Pattern Recognition (Print) S. 72 - 77 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
02.12.2020
|
| Schlagworte: | |
| ISSN: | 2158-5709 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!