Enhancing Music Recommendation with Social Media Content: an Attentive Multimodal Autoencoder Approach
Music recommendation methods predict users' music preference primarily based on historical ratings. Meanwhile, manifold personal factors of users are also important for the problem, and research efforts have been made to improve the recommendation performance with auxiliary user information. As...
Uloženo v:
| Vydáno v: | Proceedings of ... International Joint Conference on Neural Networks s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2020
|
| Témata: | |
| ISSN: | 2161-4407 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Music recommendation methods predict users' music preference primarily based on historical ratings. Meanwhile, manifold personal factors of users are also important for the problem, and research efforts have been made to improve the recommendation performance with auxiliary user information. As an important indicator of users' personal traits and states, the numerous social media content (e.g., texts, images and short videos), however, is still hardly exploited. In this work, we systematically study the utilization of multimodal social media content for music recommendation. We define groups of both targeted handcrafted features and generic deep features for each modality, and further propose an Attentive Multimodal Autoencoder approach (AMAE) to learn cross-modal latent representations from the extracted features. Attention mechanism is also employed to integrate users' global and contextual music preference with alterable weights. Experiments demonstrate remarkable improvement of recommendation performance (+2.40% in Hit Ratio and +3.30% in NDCG), manifesting the effectiveness of our AMAE approach, as well as the significance of incorporating social media content data in music recommendation. |
|---|---|
| AbstractList | Music recommendation methods predict users' music preference primarily based on historical ratings. Meanwhile, manifold personal factors of users are also important for the problem, and research efforts have been made to improve the recommendation performance with auxiliary user information. As an important indicator of users' personal traits and states, the numerous social media content (e.g., texts, images and short videos), however, is still hardly exploited. In this work, we systematically study the utilization of multimodal social media content for music recommendation. We define groups of both targeted handcrafted features and generic deep features for each modality, and further propose an Attentive Multimodal Autoencoder approach (AMAE) to learn cross-modal latent representations from the extracted features. Attention mechanism is also employed to integrate users' global and contextual music preference with alterable weights. Experiments demonstrate remarkable improvement of recommendation performance (+2.40% in Hit Ratio and +3.30% in NDCG), manifesting the effectiveness of our AMAE approach, as well as the significance of incorporating social media content data in music recommendation. |
| Author | Wang, Hanjie Shen, Tiancheng Jia, Jia Chen, Bo Li, Yan |
| Author_xml | – sequence: 1 givenname: Tiancheng surname: Shen fullname: Shen, Tiancheng organization: Tsinghua University,Department of Computer Science and Technology,Beijing,China – sequence: 2 givenname: Jia surname: Jia fullname: Jia, Jia organization: Tsinghua University,Department of Computer Science and Technology,Beijing,China – sequence: 3 givenname: Yan surname: Li fullname: Li, Yan organization: WeChat AI, Tencent Inc.,China – sequence: 4 givenname: Hanjie surname: Wang fullname: Wang, Hanjie organization: WeChat AI, Tencent Inc.,China – sequence: 5 givenname: Bo surname: Chen fullname: Chen, Bo organization: WeChat AI, Tencent Inc.,China |
| BookMark | eNotkE1OwzAUhA0CibZwAhb4Agn2s-PG7KKoQFFbJH7WlWu_UKPGrhIXxO0Joqv5FjMjzYzJWYgBCbnhLOec6dv5U71ayVKxIgcGLNfAVKnlCRnzKZRcaVDTUzICrngmJZtekHHffzIGQmsxIs0sbE2wPnzQ5aH3lr6gjW2LwZnkY6DfPm3pa7Te7OgSnTe0jiFhSHfUBFqlP_RfOIR3ybfRDbbqkCIGGx12tNrvu2js9pKcN2bX49VRJ-T9fvZWP2aL54d5XS0yD0ykrGSAUqJ1G2dK17CBC8ml1QAKZCM4iGLw8HKYU3BorJPaFVoot1GlFEZMyPV_r0fE9b7zrel-1sdPxC-O3FkD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IJCNN48605.2020.9206894 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Computer Science |
| EISBN | 1728169267 9781728169262 |
| EISSN | 2161-4407 |
| EndPage | 8 |
| ExternalDocumentID | 9206894 |
| Genre | orig-research |
| GroupedDBID | 29I 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-802e44ecdbda8df044e5414c922624f3123580218216512fcd49d5936db6843a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626021402059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:31:20 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-802e44ecdbda8df044e5414c922624f3123580218216512fcd49d5936db6843a3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9206894 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-July |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-July |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of ... International Joint Conference on Neural Networks |
| PublicationTitleAbbrev | IJCNN |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023993 |
| Score | 1.7986562 |
| Snippet | Music recommendation methods predict users' music preference primarily based on historical ratings. Meanwhile, manifold personal factors of users are also... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Feature extraction Image color analysis Psychology Recommender systems Social network services Videos Visualization |
| Title | Enhancing Music Recommendation with Social Media Content: an Attentive Multimodal Autoencoder Approach |
| URI | https://ieeexplore.ieee.org/document/9206894 |
| WOSCitedRecordID | wos000626021402059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2ViqFToS3iWx4YSZs4bmKzVVUrQCjqAKhb5cQ2dGiCSorEv8fnhCAkFjYnSnSST77z2ffeA7iiqTTCpNyLxpnvYcbyOHOPgUptStDC4bifH-Ik4culWLTgusHCaK1d85ke4tDd5asi2-FR2UhQP-KC7cFeHEcVVqsprjDR1v1bgS9Gd_fTJEGBpbGtAak_rH_9paHiUsi8-z_jBzD4weKRRZNlDqGl8x50v8UYSL02e9BpQtlnH8wsf0UijfyFOCFnglXmxhqoFJQInr6SCplL8KpGEsdSlZc3ROZkUuLQhkHi4LmbQtnPJruyQNJLZY1OaiLyATzNZ4_TW69WVPDW1A9Lm46oZkxnKlWSK-PbMcqAZ8JuwigzoQPOOlL3wDqLmkwxoVDzT6URZ6EMj6CdF7k-BpJJZTfnvjEBNzYIcDE2SlIV80jKlEp5An2cw9VbRZqxqqfv9O_XZ9BBN1V9sOfQLrc7fQH72Ue5ft9eOk9_AbSWqr0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNJETChh_24NHB1vXjdYbIRhQXDig4Ua6tVUObAaHif-9bTdnTLx465YtL-lL3-tr3_d9ANc45oqpmDphkLiOyVgOJfbRE7FOCZJZHPfztB9FdLFgsxrcVFgYKaVtPpNdM7R3-SJLtuaorMewG1JGdmA3IAS7BVqrKq9Mqi07uDyX9Sb3wygyEkuBrgKx2y1__qWiYpPIXfN_5g-g84PGQ7MqzxxCTaYtaH7LMaBydbagUQWzzzaoUfpqqDTSF2SlnJGpM9faQKGhhMz5Kyqwuchc1nBkearS_BbxFA1yM9SBEFmA7joT-rPBNs8M7aXQRgclFXkHnu5G8-HYKTUVnBV2_VwnJCwJkYmIBadCuXpshMATprdhmCjfQmctrbun3YVVIggTRvVPxCElPvePoJ5mqTwGlHCht-euUh5VOgxQFijBsejTkPMYc34CbTOHy7eCNmNZTt_p36-vYH88f5wup5Po4QwaxmVFV-w51PPNVl7AXvKRr943l9brX8GnrgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Enhancing+Music+Recommendation+with+Social+Media+Content%3A+an+Attentive+Multimodal+Autoencoder+Approach&rft.au=Shen%2C+Tiancheng&rft.au=Jia%2C+Jia&rft.au=Li%2C+Yan&rft.au=Wang%2C+Hanjie&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FIJCNN48605.2020.9206894&rft.externalDocID=9206894 |