Enhancing Music Recommendation with Social Media Content: an Attentive Multimodal Autoencoder Approach

Music recommendation methods predict users' music preference primarily based on historical ratings. Meanwhile, manifold personal factors of users are also important for the problem, and research efforts have been made to improve the recommendation performance with auxiliary user information. As...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ... International Joint Conference on Neural Networks s. 1 - 8
Hlavní autoři: Shen, Tiancheng, Jia, Jia, Li, Yan, Wang, Hanjie, Chen, Bo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2020
Témata:
ISSN:2161-4407
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Music recommendation methods predict users' music preference primarily based on historical ratings. Meanwhile, manifold personal factors of users are also important for the problem, and research efforts have been made to improve the recommendation performance with auxiliary user information. As an important indicator of users' personal traits and states, the numerous social media content (e.g., texts, images and short videos), however, is still hardly exploited. In this work, we systematically study the utilization of multimodal social media content for music recommendation. We define groups of both targeted handcrafted features and generic deep features for each modality, and further propose an Attentive Multimodal Autoencoder approach (AMAE) to learn cross-modal latent representations from the extracted features. Attention mechanism is also employed to integrate users' global and contextual music preference with alterable weights. Experiments demonstrate remarkable improvement of recommendation performance (+2.40% in Hit Ratio and +3.30% in NDCG), manifesting the effectiveness of our AMAE approach, as well as the significance of incorporating social media content data in music recommendation.
AbstractList Music recommendation methods predict users' music preference primarily based on historical ratings. Meanwhile, manifold personal factors of users are also important for the problem, and research efforts have been made to improve the recommendation performance with auxiliary user information. As an important indicator of users' personal traits and states, the numerous social media content (e.g., texts, images and short videos), however, is still hardly exploited. In this work, we systematically study the utilization of multimodal social media content for music recommendation. We define groups of both targeted handcrafted features and generic deep features for each modality, and further propose an Attentive Multimodal Autoencoder approach (AMAE) to learn cross-modal latent representations from the extracted features. Attention mechanism is also employed to integrate users' global and contextual music preference with alterable weights. Experiments demonstrate remarkable improvement of recommendation performance (+2.40% in Hit Ratio and +3.30% in NDCG), manifesting the effectiveness of our AMAE approach, as well as the significance of incorporating social media content data in music recommendation.
Author Wang, Hanjie
Shen, Tiancheng
Jia, Jia
Chen, Bo
Li, Yan
Author_xml – sequence: 1
  givenname: Tiancheng
  surname: Shen
  fullname: Shen, Tiancheng
  organization: Tsinghua University,Department of Computer Science and Technology,Beijing,China
– sequence: 2
  givenname: Jia
  surname: Jia
  fullname: Jia, Jia
  organization: Tsinghua University,Department of Computer Science and Technology,Beijing,China
– sequence: 3
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: WeChat AI, Tencent Inc.,China
– sequence: 4
  givenname: Hanjie
  surname: Wang
  fullname: Wang, Hanjie
  organization: WeChat AI, Tencent Inc.,China
– sequence: 5
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
  organization: WeChat AI, Tencent Inc.,China
BookMark eNotkE1OwzAUhA0CibZwAhb4Agn2s-PG7KKoQFFbJH7WlWu_UKPGrhIXxO0Joqv5FjMjzYzJWYgBCbnhLOec6dv5U71ayVKxIgcGLNfAVKnlCRnzKZRcaVDTUzICrngmJZtekHHffzIGQmsxIs0sbE2wPnzQ5aH3lr6gjW2LwZnkY6DfPm3pa7Te7OgSnTe0jiFhSHfUBFqlP_RfOIR3ybfRDbbqkCIGGx12tNrvu2js9pKcN2bX49VRJ-T9fvZWP2aL54d5XS0yD0ykrGSAUqJ1G2dK17CBC8ml1QAKZCM4iGLw8HKYU3BorJPaFVoot1GlFEZMyPV_r0fE9b7zrel-1sdPxC-O3FkD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN48605.2020.9206894
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISBN 1728169267
9781728169262
EISSN 2161-4407
EndPage 8
ExternalDocumentID 9206894
Genre orig-research
GroupedDBID 29I
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-802e44ecdbda8df044e5414c922624f3123580218216512fcd49d5936db6843a3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626021402059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:31:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-802e44ecdbda8df044e5414c922624f3123580218216512fcd49d5936db6843a3
PageCount 8
ParticipantIDs ieee_primary_9206894
PublicationCentury 2000
PublicationDate 2020-July
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationTitle Proceedings of ... International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
Score 1.7986562
Snippet Music recommendation methods predict users' music preference primarily based on historical ratings. Meanwhile, manifold personal factors of users are also...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Feature extraction
Image color analysis
Psychology
Recommender systems
Social network services
Videos
Visualization
Title Enhancing Music Recommendation with Social Media Content: an Attentive Multimodal Autoencoder Approach
URI https://ieeexplore.ieee.org/document/9206894
WOSCitedRecordID wos000626021402059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2ViqFToS3iWx4YSZs4bmKzVVUrQCjqAKhb5cQ2dGiCSorEv8fnhCAkFjYnSnSST77z2ffeA7iiqTTCpNyLxpnvYcbyOHOPgUptStDC4bifH-Ik4culWLTgusHCaK1d85ke4tDd5asi2-FR2UhQP-KC7cFeHEcVVqsprjDR1v1bgS9Gd_fTJEGBpbGtAak_rH_9paHiUsi8-z_jBzD4weKRRZNlDqGl8x50v8UYSL02e9BpQtlnH8wsf0UijfyFOCFnglXmxhqoFJQInr6SCplL8KpGEsdSlZc3ROZkUuLQhkHi4LmbQtnPJruyQNJLZY1OaiLyATzNZ4_TW69WVPDW1A9Lm46oZkxnKlWSK-PbMcqAZ8JuwigzoQPOOlL3wDqLmkwxoVDzT6URZ6EMj6CdF7k-BpJJZTfnvjEBNzYIcDE2SlIV80jKlEp5An2cw9VbRZqxqqfv9O_XZ9BBN1V9sOfQLrc7fQH72Ue5ft9eOk9_AbSWqr0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNJETChh_24NHB1vXjdYbIRhQXDig4Ua6tVUObAaHif-9bTdnTLx465YtL-lL3-tr3_d9ANc45oqpmDphkLiOyVgOJfbRE7FOCZJZHPfztB9FdLFgsxrcVFgYKaVtPpNdM7R3-SJLtuaorMewG1JGdmA3IAS7BVqrKq9Mqi07uDyX9Sb3wygyEkuBrgKx2y1__qWiYpPIXfN_5g-g84PGQ7MqzxxCTaYtaH7LMaBydbagUQWzzzaoUfpqqDTSF2SlnJGpM9faQKGhhMz5Kyqwuchc1nBkearS_BbxFA1yM9SBEFmA7joT-rPBNs8M7aXQRgclFXkHnu5G8-HYKTUVnBV2_VwnJCwJkYmIBadCuXpshMATprdhmCjfQmctrbun3YVVIggTRvVPxCElPvePoJ5mqTwGlHCht-euUh5VOgxQFijBsejTkPMYc34CbTOHy7eCNmNZTt_p36-vYH88f5wup5Po4QwaxmVFV-w51PPNVl7AXvKRr943l9brX8GnrgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Enhancing+Music+Recommendation+with+Social+Media+Content%3A+an+Attentive+Multimodal+Autoencoder+Approach&rft.au=Shen%2C+Tiancheng&rft.au=Jia%2C+Jia&rft.au=Li%2C+Yan&rft.au=Wang%2C+Hanjie&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FIJCNN48605.2020.9206894&rft.externalDocID=9206894