Towards Autonomous Visual Navigation in Arable Fields

Autonomous navigation of a robot in agricultural fields is essential for every task from crop monitoring to weed management and fertilizer application. Many current approaches rely on accurate GPS, however, such technology is expensive and can be impacted by lack of coverage. As such, autonomous nav...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems s. 6585 - 6592
Hlavní autori: Ahmadi, Alireza, Halstead, Michael, McCool, Chris
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 23.10.2022
Predmet:
ISSN:2153-0866
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Autonomous navigation of a robot in agricultural fields is essential for every task from crop monitoring to weed management and fertilizer application. Many current approaches rely on accurate GPS, however, such technology is expensive and can be impacted by lack of coverage. As such, autonomous navigation through sensors that can interpret their environment (such as cameras) is important to achieve the goal of autonomy in agriculture. In this paper, we introduce a purely vision-based navigation scheme that is able to reliably guide the robot through row-crop fields using computer vision and signal processing techniques without manual intervention. Independent of any global localization or mapping, this approach is able to accurately follow the crop-rows and switch between the rows, only using onboard cameras. The proposed navigation scheme can be deployed in a wide range of fields with different canopy shapes in various growth stages, creating a crop agnostic navigation approach. This was completed under various illumination conditions using simulated and real fields where we achieve an average navigation accuracy of 3.82cm with minimal human intervention (hyper-parameter tuning) on BonnBot-I.
AbstractList Autonomous navigation of a robot in agricultural fields is essential for every task from crop monitoring to weed management and fertilizer application. Many current approaches rely on accurate GPS, however, such technology is expensive and can be impacted by lack of coverage. As such, autonomous navigation through sensors that can interpret their environment (such as cameras) is important to achieve the goal of autonomy in agriculture. In this paper, we introduce a purely vision-based navigation scheme that is able to reliably guide the robot through row-crop fields using computer vision and signal processing techniques without manual intervention. Independent of any global localization or mapping, this approach is able to accurately follow the crop-rows and switch between the rows, only using onboard cameras. The proposed navigation scheme can be deployed in a wide range of fields with different canopy shapes in various growth stages, creating a crop agnostic navigation approach. This was completed under various illumination conditions using simulated and real fields where we achieve an average navigation accuracy of 3.82cm with minimal human intervention (hyper-parameter tuning) on BonnBot-I.
Author Ahmadi, Alireza
McCool, Chris
Halstead, Michael
Author_xml – sequence: 1
  givenname: Alireza
  surname: Ahmadi
  fullname: Ahmadi, Alireza
  email: alireza.ahmadi@uni-bonn.de
  organization: University of Bonn,Bonn,Germany,53115
– sequence: 2
  givenname: Michael
  surname: Halstead
  fullname: Halstead, Michael
  email: michael.halstead@uni-bonn.de
  organization: University of Bonn,Bonn,Germany,53115
– sequence: 3
  givenname: Chris
  surname: McCool
  fullname: McCool, Chris
  email: cmccool@uni-bonn.de
  organization: University of Bonn,Bonn,Germany,53115
BookMark eNotj91KwzAYQKMouM09gSB5gdYvSfPzXZbhdDAc6PR2pE0ika6RplV8ewV3dTg3B86cXPSp94TcMigZA7zbPO9eKq0YLzlwXiIaxhHPyJwpJSuNXPNzMuNMigKMUldkmfMHADDQaFDNiNynbzu4TOtpTH06pinTt5gn29En-xXf7RhTT2NP68E2nafr6DuXr8llsF32yxMX5HV9v189Ftvdw2ZVb4vIQYyFdoDYSBOMaHlAlFwZdNpb4VvdGCMCU4GjqjQYKb0LrgUMCtyfMt8ysSA3_93ovT98DvFoh5_D6VL8AhpfSAc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS47612.2022.9981299
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665479272
9781665479271
EISSN 2153-0866
EndPage 6592
ExternalDocumentID 9981299
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-7d099b58f83c2f9952689d7ea3ec7b883f16f296470855edfdc09f60d0851ec13
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000908368204083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:27:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-7d099b58f83c2f9952689d7ea3ec7b883f16f296470855edfdc09f60d0851ec13
PageCount 8
ParticipantIDs ieee_primary_9981299
PublicationCentury 2000
PublicationDate 2022-Oct.-23
PublicationDateYYYYMMDD 2022-10-23
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.3456979
Snippet Autonomous navigation of a robot in agricultural fields is essential for every task from crop monitoring to weed management and fertilizer application. Many...
SourceID ieee
SourceType Publisher
StartPage 6585
SubjectTerms Agricultural Automation
Cameras
Crops
Navigation
Robot vision systems
Robotics and Automation in Agriculture and Forestry
Shape
Switches
Task analysis
Vision-Based Navigation
Title Towards Autonomous Visual Navigation in Arable Fields
URI https://ieeexplore.ieee.org/document/9981299
WOSCitedRecordID wos000908368204083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Ne_NjEb3LwaLe06ZrkOMShlzl0ym6j-YKCdGNt9_eb15VNwYu3EEhCEpL39fu9B3AfKZVQxuJAJsoESIX0T8qJwAkdKwwScunqYhN8MhHzuZy24GHHhbHW1uAz28dmHcs3S12hq2zgTQMvnmQb2n6OLVdr70-hXAqZNCTgkMrBy9vre-ytdKRbRVG_GfyrikotRMbH_1v-BHp7Nh6Z7uTMKbRsfgZHPxIJdmE4q9GvBRlVJbIUvDlPPrOiSr_IJN3UWTSWOclyMlojVYqMEbdW9OBj_DR7fA6agghBFlFWBtx4fU4NhRNMR05KTNUiDbcps5orIZgLE4dxVI7oM2uc0VS6hBrUq6wO2Tl08mVuL4AYq2JHk4im3iBSiVEyVl5YuVhxbnTIL6GLB7BYbXNeLJq9X_3dfQ2HeMb4p0fsBjrlurK3cKA3ZVas7-qL-gbj3ZMq
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CurFRxXf5uDRbbNJukmORSwt1rVold7K5gULspXubn-_yXZpFbx4C4FAMiGZ-WbmmwHgDksZIUJoICKpA0-FdE_K8sByRaUPEjJhq2YTLI75dCrGDXC_5sIYY6rkM9P2wyqWr-eq9K6yjoMGTj2JLbDdpRSHK7bWxqOCmOAiqmnAIRKd4evLG3U43ROuMG7Xy3_1UanUSP_gfxs4BCcbPh4crzXNEWiY7Bjs_ygl2ALdSZX_msNeWXieggP08CPNy-QTxsmyqqMxz2Cawd7Ck6Vg32eu5Sfgvf84eRgEdUuEIMWIFAHTzqKTXW45UdgK4Yu1CM1MQoxiknNiw8j6SCrz-WdGW62QsBHS3rIyKiSnoJnNM3MGoDaSWhRhlDhIJCMtBZVOXVkqGdMqZOeg5QUw-1pVvZjVZ7_4e_oW7A4mz6PZaBg_XYI9L2__w2NyBZrFojTXYEctizRf3FSX9g2-LJZx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Towards+Autonomous+Visual+Navigation+in+Arable+Fields&rft.au=Ahmadi%2C+Alireza&rft.au=Halstead%2C+Michael&rft.au=McCool%2C+Chris&rft.date=2022-10-23&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=6585&rft.epage=6592&rft_id=info:doi/10.1109%2FIROS47612.2022.9981299&rft.externalDocID=9981299