pGRASS-Solver: A Parallel Iterative Solver for Scalable Power Grid Analysis Based on Graph Spectral Sparsification

Due to the rapid advance of the integrated circuit technology, power grid analysis usually imposes a severe computational challenge, where linear equations with millions or even billions of unknowns need to be solved. Recent graph spectral sparsification techniques have shown promising performance i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design s. 1 - 9
Hlavní autoři: Liu, Zhiqiang, Yu, Wenjian
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2021
Témata:
ISSN:1558-2434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the rapid advance of the integrated circuit technology, power grid analysis usually imposes a severe computational challenge, where linear equations with millions or even billions of unknowns need to be solved. Recent graph spectral sparsification techniques have shown promising performance in accelerating power grid analysis. However, previous graph sparsification based iterative solvers are restricted by difficulty of parallelization. Existing graph sparsification algorithms are implemented under the assumption of serial computing, while factorization and backward/forward substitution of the spar-sifier's Laplacian matrix are also hard to parallelize. On the other hand, partition based iterative methods which can be easily parallelized lack a direct control of the relative condition number of the preconditioner and consume more memory. In this work, we propose a novel parallel iterative solver for scalable power grid analysis by integrating graph sparsification techniques and partition based methods. We first propose a practically-efficient parallel graph sparsification algorithm. Then, domain decomposition method is leveraged to solve the sparsifier's Laplacian matrix. An efficient graph sparsification based parallel preconditioner is obtained, which not only leads to fast convergence but also enjoys ease of parallelization. Extensive experiments are carried out to demonstrate the superior efficiency of the proposed solver for large-scale power grid analysis, showing 5.2X speedup averagely over the state-of-the-art parallel iterative solver. Moreover, it solves a real-world power grid matrix with 0.36 billion nodes and 8.7 billion nonzeros within 23 minutes on a 16-core machine, which is 9.5X faster than the best result of sequential graph sparsification based solver.
AbstractList Due to the rapid advance of the integrated circuit technology, power grid analysis usually imposes a severe computational challenge, where linear equations with millions or even billions of unknowns need to be solved. Recent graph spectral sparsification techniques have shown promising performance in accelerating power grid analysis. However, previous graph sparsification based iterative solvers are restricted by difficulty of parallelization. Existing graph sparsification algorithms are implemented under the assumption of serial computing, while factorization and backward/forward substitution of the spar-sifier's Laplacian matrix are also hard to parallelize. On the other hand, partition based iterative methods which can be easily parallelized lack a direct control of the relative condition number of the preconditioner and consume more memory. In this work, we propose a novel parallel iterative solver for scalable power grid analysis by integrating graph sparsification techniques and partition based methods. We first propose a practically-efficient parallel graph sparsification algorithm. Then, domain decomposition method is leveraged to solve the sparsifier's Laplacian matrix. An efficient graph sparsification based parallel preconditioner is obtained, which not only leads to fast convergence but also enjoys ease of parallelization. Extensive experiments are carried out to demonstrate the superior efficiency of the proposed solver for large-scale power grid analysis, showing 5.2X speedup averagely over the state-of-the-art parallel iterative solver. Moreover, it solves a real-world power grid matrix with 0.36 billion nodes and 8.7 billion nonzeros within 23 minutes on a 16-core machine, which is 9.5X faster than the best result of sequential graph sparsification based solver.
Author Liu, Zhiqiang
Yu, Wenjian
Author_xml – sequence: 1
  givenname: Zhiqiang
  surname: Liu
  fullname: Liu, Zhiqiang
  email: liu-zq20@mails.tsinghua.edu.cn
  organization: Tsinghua University,Dept. Computer Science & Tech., BNRist,Beijing,China,100084
– sequence: 2
  givenname: Wenjian
  surname: Yu
  fullname: Yu, Wenjian
  email: yu-wj@tsinghua.edu.cn
  organization: Tsinghua University,Dept. Computer Science & Tech., BNRist,Beijing,China,100084
BookMark eNotkF9LwzAUxaMouM19Ah_MF-jM_6a-1ap1MHDYvY-0u8FIbEtSJvv2Braneznn8INz5uimH3pA6JGSFaWkeFpXVfkqaSH1ihFGV4USXOjiCi2LXFOlpBCS5PoazaiUOmPJvUPzGH8ISXmtZiiM9VfZNFkz-COEZ1zirQnGe_B4PUEwkzsCPpvYDgE3nfGm9YC3w1-S6uAOuOyNP0UX8YuJcMBDn2QzfuNmhG5KsPSYEJ11XcIN_T26tcZHWF7uAu3e33bVR7b5rNdVuckcI3zK8tRKGEVyblUrWsaFZC0TWjCaKqqDJtxakFaRlNFMWwV5RztZaNUaIHyBHs5YBwD7MbhfE077y0L8H5gBXE8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCAD51958.2021.9643489
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665445078
1665445076
EISSN 1558-2434
EndPage 9
ExternalDocumentID 9643489
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 62090025
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-79584a6073f6b4b23452b2484214896d803ffe5f60607828f6e7c1c5986bae03
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747493600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue May 06 03:33:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-79584a6073f6b4b23452b2484214896d803ffe5f60607828f6e7c1c5986bae03
PageCount 9
ParticipantIDs ieee_primary_9643489
PublicationCentury 2000
PublicationDate 2021-Nov.-1
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.-1
  day: 01
PublicationDecade 2020
PublicationTitle Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design
PublicationTitleAbbrev ICCAD
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020286
Score 2.1836817
Snippet Due to the rapid advance of the integrated circuit technology, power grid analysis usually imposes a severe computational challenge, where linear equations...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Design automation
domain decomposition method
Graph spectral sparsification
Integrated circuit technology
iterative solver
Laplace equations
Matrix decomposition
parallel computing
Partitioning algorithms
power grid analysis
Power grids
preconditioned conjugate gradient algorithm
Title pGRASS-Solver: A Parallel Iterative Solver for Scalable Power Grid Analysis Based on Graph Spectral Sparsification
URI https://ieeexplore.ieee.org/document/9643489
WOSCitedRecordID wos000747493600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaigEWPlrEtzww4jZ1HDthK4iWLlVEOnSrbMcWlVBShZbfz9kJBSQWNsuJZeVO9vmce-8hdKu4olZpQ5I8ogQ2vIgoaQOic5nHXBodCevFJsRsFi8WSdpCdzssjDHGF5-Zvmv6f_l5qbfuqmzguKNYnLRRWwhRY7V2yRXESd7Ubw2DZDB9hC_xTCqQA9Jhvxn6S0PFh5Dx4f8mP0K9byweTndR5hi1THGCDn7QCHZRtZ68jLKMZKUrc77HI5zKymmkvOGpJ02GHQ3XDzGcUXEGfnGIKZw6iTQ8qVY5_iInwQ8Q1nJcFtAt16_Y6dO7yxBoQArs6oq8K3toPn6aPz6TRkuBrGgQbogASzDJYUFbrpiiIYuooixmFPKhhOdxEFprIgv5jDs0xJYboYfasbcraYLwFHWKsjBnCIdChFrDa9xaFssgCSJpYJBkoZDGRueo64y3XNdsGcvGbhd_d1-ifeefGt13hTqbamuu0Z7-2Kzeqxvv4k9Yg6f_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VggRcWFrEjg8ccZvFzsKtVHQRpYpoD71VjmOLSiipQsv3M05CAYkLN8uJFXlG8Xjsee8B3MZe7OhYKhom3KG44HEaC21RmYgk8ISS3NeF2IQ_HgezWRjV4G6DhVFKFcVnqmWaxV1-ksm1OSprG-4oFoRbsM0Zc-wSrbVJrzBSelUFl22F7WEX51JwqWAW6NitavAvFZUiiPQO_vf5Q2h-o_FItIkzR1BT6THs_yASbEC-7L90JhM6yUyh8z3pkEjkRiXljQwL2mRc00j5kOAulUzQMwYzRSIjkkb6-SIhX_Qk5AEDW0KyFLvF8pUYhXpzHIINTIJNZVHhzCZMe4_T7oBWagp04VjuivpoCSY8_KW1F7PYcRl3YocFaEiclJcElqu14hozGrNtCLSnfGlLw98eC2W5J1BPs1SdAnF935USX_O0ZoGwQosLhYMEc32hND-DhjHefFnyZcwru53_3X0Du4Pp82g-Go6fLmDP-KrE-l1CfZWv1RXsyI_V4j2_Ltz9CUVJq0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=pGRASS-Solver%3A+A+Parallel+Iterative+Solver+for+Scalable+Power+Grid+Analysis+Based+on+Graph+Spectral+Sparsification&rft.au=Liu%2C+Zhiqiang&rft.au=Yu%2C+Wenjian&rft.date=2021-11-01&rft.pub=IEEE&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FICCAD51958.2021.9643489&rft.externalDocID=9643489