Sensor Fault Detection Using an Extended Kalman Filter and Machine Learning for a Vehicle Dynamics Controller
This paper describes a new sensor fault detection approach for a vehicle dynamics controller. The detection problem is divided into two parts. First, a model-based observer is used to incorporate the knowledge of the system into the fault detection. Next, a data driven classification algorithm based...
Uložené v:
| Vydané v: | IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society s. 361 - 366 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
18.10.2020
|
| Predmet: | |
| ISSN: | 2577-1647 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper describes a new sensor fault detection approach for a vehicle dynamics controller. The detection problem is divided into two parts. First, a model-based observer is used to incorporate the knowledge of the system into the fault detection. Next, a data driven classification algorithm based on kalman filter performance metrics is used. This machine learning algorithm is trained using real vehicle data and, therefore, able to handle model uncertainties and disturbances inherently. Due to the usage of a nonlinear observer, the fault detection is suitable up to the limits of handling. The presented structure offers the possibility to use the same classification algorithm for different vehicles as the vehicles' behavior is abstracted in the observer. Therefore, the need of extensive training data is reduced. This paper focuses on the development of features and gives a first proof of concept. The developed fault detection is validated with real car measurements. |
|---|---|
| AbstractList | This paper describes a new sensor fault detection approach for a vehicle dynamics controller. The detection problem is divided into two parts. First, a model-based observer is used to incorporate the knowledge of the system into the fault detection. Next, a data driven classification algorithm based on kalman filter performance metrics is used. This machine learning algorithm is trained using real vehicle data and, therefore, able to handle model uncertainties and disturbances inherently. Due to the usage of a nonlinear observer, the fault detection is suitable up to the limits of handling. The presented structure offers the possibility to use the same classification algorithm for different vehicles as the vehicles' behavior is abstracted in the observer. Therefore, the need of extensive training data is reduced. This paper focuses on the development of features and gives a first proof of concept. The developed fault detection is validated with real car measurements. |
| Author | Sawodny, Oliver Speidel, Simon A. Ossig, Daniel L. Kurzenberger, Kevin Henning, Kay-Uwe |
| Author_xml | – sequence: 1 givenname: Daniel L. surname: Ossig fullname: Ossig, Daniel L. email: ossig@isys.uni-stuttgart.de organization: University of Stuttgart,Institute for System Dynamics,Stuttgart,Germany – sequence: 2 givenname: Kevin surname: Kurzenberger fullname: Kurzenberger, Kevin email: kevin.kurzenberger@gmail.com organization: University of Stuttgart,Former student,Stuttgart,Germany – sequence: 3 givenname: Simon A. surname: Speidel fullname: Speidel, Simon A. email: speidel@isys.uni-stuttgart.de organization: University of Stuttgart,Institute for System Dynamics,Stuttgart,Germany – sequence: 4 givenname: Kay-Uwe surname: Henning fullname: Henning, Kay-Uwe email: kay-uwe.henning@audi.de organization: AUDI AG,R&D Suspension Systems,Ingolstadt,Germany – sequence: 5 givenname: Oliver surname: Sawodny fullname: Sawodny, Oliver email: sawodny@isys.uni-stuttgart.de organization: University of Stuttgart,Institute for System Dynamics,Stuttgart,Germany |
| BookMark | eNotkMtOwzAURA0CiVL6BSzwD6T4_ViitIWKQhdQtpXj3FBLiYMcI9G_J4iuRqMzOou5Rhexj4DQHSVzSom9Xy_L7avg3PI5I4zMLZNCCHOGZlYbqpmhUlAhz9GESa0LqoS-QrNhCBURTGhCpJqg7g3i0Ce8ct9txgvI4HPoI94NIX5iF_HyJ0OsocbPru3GvgpthjSSGr84fwgR8AZcin_zZhQ5_AGH4FvAi2N0XfADLvuYU9-2kG7QZePaAWannKLdavlePhWb7eO6fNgUgRGeC620515qZT3VBFwjSaUMrUytGiu9ZZQ22oykEpR6K3jNTUO11koJ4ZTgU3T77w0AsP9KoXPpuD8dxH8Bd79cDg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IECON43393.2020.9254448 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728154145 1728154146 |
| EISSN | 2577-1647 |
| EndPage | 366 |
| ExternalDocumentID | 9254448 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO |
| ID | FETCH-LOGICAL-i203t-767c3c5769c170eaf50b681b8d6f95c9211f7870eb411c943d38f17776644a643 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637323700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-767c3c5769c170eaf50b681b8d6f95c9211f7870eb411c943d38f17776644a643 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9254448 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Oct.-18 |
| PublicationDateYYYYMMDD | 2020-10-18 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct.-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society |
| PublicationTitleAbbrev | IECON |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib042470056 |
| Score | 2.1510494 |
| Snippet | This paper describes a new sensor fault detection approach for a vehicle dynamics controller. The detection problem is divided into two parts. First, a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 361 |
| SubjectTerms | automotive applications binary classification problem EKF Fault detection fault diagnosis hybrid fault diagnosis machine learning Machine learning algorithms Mathematical model Observers Roads state estimation Technological innovation Vehicle dynamics wavelet packet transform |
| Title | Sensor Fault Detection Using an Extended Kalman Filter and Machine Learning for a Vehicle Dynamics Controller |
| URI | https://ieeexplore.ieee.org/document/9254448 |
| WOSCitedRecordID | wos000637323700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI62iQMnQBvirRw40q1Z0yY5b1QgxDSJh3ab0sSFSVuHuo7fj5OWISQu3NpGVSXHrj87n21CrqUKMxMmgMqrIOBc5GhS3KLhMSukAp2A8cMmxGQiZzM1bZGbXS0MAHjyGfTdpT_Lt2uzdamygXL9tLhsk7YQSV2r9a07fMiFa2vZULhYqAb3bhQgjyIVYRg4DPvN27_GqHgvkh787_uHpPdTjkenO0dzRFpQdMnqCQPQdUlTvV1WdAyV51QV1HMAqC7obZPepg96ucL7dOEOxnHF0kfPoATaNFd9o4hcqaav8O60iI7rKfUbOqp57Esoe-QlvX0e3QXN7IRgMQyjKhCJMJHBYEIZJkLQeRxmCUJUaZNcxUZh3Jc7W4WMM2YUj2wkcyZQrgiQNMKUY9Ip1gWcEBpnNgYlGGh0ZbECqbhPnWqN6NyI_JR0najmH3V7jHkjpbO_H5-Tfbcb7vfP5AXpVOUWLsme-awWm_LK7-kXs06iBw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKQYIToBax4wNH0tqNE9vnLmrVRZUoqLfKcSZQqU1RmvL92E4oQuLCLYsiRfaM5s34zTyEHoUkkSYhGOOV4DHGE-NSLDaOR2MuJKgQtBOb4JOJmM_ltIKe9r0wAODIZ9Cwl-4sP97onS2VNaWdp8XEATq0ylmk6Nb6th7WYtwOtixJXJTI5sCKATLfl75JBFukUX7_S0jFxZHe6f_-4AzVfxry8HQfas5RBdIaWj-bFHST4Z7arXLcgdyxqlLsWABYpbhbFrjxUK3W5r63tEfj5k2Mx45DCbgcr_qGDXbFCr_Cu7Uj3Cl06re4XTDZV5DV0UuvO2v3vVI9wVu2iJ97POTa1yadkJpyAioJSBQakCriMJGBlibzS6y3QsQo1ZL5sS8SyjkPDURSBqhcoGq6SeES4SCKA5CcgjLBLJAgJHPFU6UMPtc8uUI1u1SLj2JAxqJcpeu_Hz-g4_5sPFqMBpPhDTqxO2ODARW3qJpnO7hDR_ozX26ze7e_X05fpU0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IECON+2020+The+46th+Annual+Conference+of+the+IEEE+Industrial+Electronics+Society&rft.atitle=Sensor+Fault+Detection+Using+an+Extended+Kalman+Filter+and+Machine+Learning+for+a+Vehicle+Dynamics+Controller&rft.au=Ossig%2C+Daniel+L.&rft.au=Kurzenberger%2C+Kevin&rft.au=Speidel%2C+Simon+A.&rft.au=Henning%2C+Kay-Uwe&rft.date=2020-10-18&rft.pub=IEEE&rft.eissn=2577-1647&rft.spage=361&rft.epage=366&rft_id=info:doi/10.1109%2FIECON43393.2020.9254448&rft.externalDocID=9254448 |