Sensor Fault Detection Using an Extended Kalman Filter and Machine Learning for a Vehicle Dynamics Controller

This paper describes a new sensor fault detection approach for a vehicle dynamics controller. The detection problem is divided into two parts. First, a model-based observer is used to incorporate the knowledge of the system into the fault detection. Next, a data driven classification algorithm based...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society s. 361 - 366
Hlavní autori: Ossig, Daniel L., Kurzenberger, Kevin, Speidel, Simon A., Henning, Kay-Uwe, Sawodny, Oliver
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 18.10.2020
Predmet:
ISSN:2577-1647
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper describes a new sensor fault detection approach for a vehicle dynamics controller. The detection problem is divided into two parts. First, a model-based observer is used to incorporate the knowledge of the system into the fault detection. Next, a data driven classification algorithm based on kalman filter performance metrics is used. This machine learning algorithm is trained using real vehicle data and, therefore, able to handle model uncertainties and disturbances inherently. Due to the usage of a nonlinear observer, the fault detection is suitable up to the limits of handling. The presented structure offers the possibility to use the same classification algorithm for different vehicles as the vehicles' behavior is abstracted in the observer. Therefore, the need of extensive training data is reduced. This paper focuses on the development of features and gives a first proof of concept. The developed fault detection is validated with real car measurements.
AbstractList This paper describes a new sensor fault detection approach for a vehicle dynamics controller. The detection problem is divided into two parts. First, a model-based observer is used to incorporate the knowledge of the system into the fault detection. Next, a data driven classification algorithm based on kalman filter performance metrics is used. This machine learning algorithm is trained using real vehicle data and, therefore, able to handle model uncertainties and disturbances inherently. Due to the usage of a nonlinear observer, the fault detection is suitable up to the limits of handling. The presented structure offers the possibility to use the same classification algorithm for different vehicles as the vehicles' behavior is abstracted in the observer. Therefore, the need of extensive training data is reduced. This paper focuses on the development of features and gives a first proof of concept. The developed fault detection is validated with real car measurements.
Author Sawodny, Oliver
Speidel, Simon A.
Ossig, Daniel L.
Kurzenberger, Kevin
Henning, Kay-Uwe
Author_xml – sequence: 1
  givenname: Daniel L.
  surname: Ossig
  fullname: Ossig, Daniel L.
  email: ossig@isys.uni-stuttgart.de
  organization: University of Stuttgart,Institute for System Dynamics,Stuttgart,Germany
– sequence: 2
  givenname: Kevin
  surname: Kurzenberger
  fullname: Kurzenberger, Kevin
  email: kevin.kurzenberger@gmail.com
  organization: University of Stuttgart,Former student,Stuttgart,Germany
– sequence: 3
  givenname: Simon A.
  surname: Speidel
  fullname: Speidel, Simon A.
  email: speidel@isys.uni-stuttgart.de
  organization: University of Stuttgart,Institute for System Dynamics,Stuttgart,Germany
– sequence: 4
  givenname: Kay-Uwe
  surname: Henning
  fullname: Henning, Kay-Uwe
  email: kay-uwe.henning@audi.de
  organization: AUDI AG,R&D Suspension Systems,Ingolstadt,Germany
– sequence: 5
  givenname: Oliver
  surname: Sawodny
  fullname: Sawodny, Oliver
  email: sawodny@isys.uni-stuttgart.de
  organization: University of Stuttgart,Institute for System Dynamics,Stuttgart,Germany
BookMark eNotkMtOwzAURA0CiVL6BSzwD6T4_ViitIWKQhdQtpXj3FBLiYMcI9G_J4iuRqMzOou5Rhexj4DQHSVzSom9Xy_L7avg3PI5I4zMLZNCCHOGZlYbqpmhUlAhz9GESa0LqoS-QrNhCBURTGhCpJqg7g3i0Ce8ct9txgvI4HPoI94NIX5iF_HyJ0OsocbPru3GvgpthjSSGr84fwgR8AZcin_zZhQ5_AGH4FvAi2N0XfADLvuYU9-2kG7QZePaAWannKLdavlePhWb7eO6fNgUgRGeC620515qZT3VBFwjSaUMrUytGiu9ZZQ22oykEpR6K3jNTUO11koJ4ZTgU3T77w0AsP9KoXPpuD8dxH8Bd79cDg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IECON43393.2020.9254448
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728154145
1728154146
EISSN 2577-1647
EndPage 366
ExternalDocumentID 9254448
Genre orig-research
GroupedDBID 6IE
6IH
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
ID FETCH-LOGICAL-i203t-767c3c5769c170eaf50b681b8d6f95c9211f7870eb411c943d38f17776644a643
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637323700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-767c3c5769c170eaf50b681b8d6f95c9211f7870eb411c943d38f17776644a643
PageCount 6
ParticipantIDs ieee_primary_9254448
PublicationCentury 2000
PublicationDate 2020-Oct.-18
PublicationDateYYYYMMDD 2020-10-18
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-18
  day: 18
PublicationDecade 2020
PublicationTitle IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society
PublicationTitleAbbrev IECON
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib042470056
Score 2.1510494
Snippet This paper describes a new sensor fault detection approach for a vehicle dynamics controller. The detection problem is divided into two parts. First, a...
SourceID ieee
SourceType Publisher
StartPage 361
SubjectTerms automotive applications
binary classification problem
EKF
Fault detection
fault diagnosis
hybrid fault diagnosis
machine learning
Machine learning algorithms
Mathematical model
Observers
Roads
state estimation
Technological innovation
Vehicle dynamics
wavelet packet transform
Title Sensor Fault Detection Using an Extended Kalman Filter and Machine Learning for a Vehicle Dynamics Controller
URI https://ieeexplore.ieee.org/document/9254448
WOSCitedRecordID wos000637323700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI62iQMnQBvirRw40q1Z0yY5b1QgxDSJh3ab0sSFSVuHuo7fj5OWISQu3NpGVSXHrj87n21CrqUKMxMmgMqrIOBc5GhS3KLhMSukAp2A8cMmxGQiZzM1bZGbXS0MAHjyGfTdpT_Lt2uzdamygXL9tLhsk7YQSV2r9a07fMiFa2vZULhYqAb3bhQgjyIVYRg4DPvN27_GqHgvkh787_uHpPdTjkenO0dzRFpQdMnqCQPQdUlTvV1WdAyV51QV1HMAqC7obZPepg96ucL7dOEOxnHF0kfPoATaNFd9o4hcqaav8O60iI7rKfUbOqp57Esoe-QlvX0e3QXN7IRgMQyjKhCJMJHBYEIZJkLQeRxmCUJUaZNcxUZh3Jc7W4WMM2YUj2wkcyZQrgiQNMKUY9Ip1gWcEBpnNgYlGGh0ZbECqbhPnWqN6NyI_JR0najmH3V7jHkjpbO_H5-Tfbcb7vfP5AXpVOUWLsme-awWm_LK7-kXs06iBw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKQYIToBax4wNH0tqNE9vnLmrVRZUoqLfKcSZQqU1RmvL92E4oQuLCLYsiRfaM5s34zTyEHoUkkSYhGOOV4DHGE-NSLDaOR2MuJKgQtBOb4JOJmM_ltIKe9r0wAODIZ9Cwl-4sP97onS2VNaWdp8XEATq0ylmk6Nb6th7WYtwOtixJXJTI5sCKATLfl75JBFukUX7_S0jFxZHe6f_-4AzVfxry8HQfas5RBdIaWj-bFHST4Z7arXLcgdyxqlLsWABYpbhbFrjxUK3W5r63tEfj5k2Mx45DCbgcr_qGDXbFCr_Cu7Uj3Cl06re4XTDZV5DV0UuvO2v3vVI9wVu2iJ97POTa1yadkJpyAioJSBQakCriMJGBlibzS6y3QsQo1ZL5sS8SyjkPDURSBqhcoGq6SeES4SCKA5CcgjLBLJAgJHPFU6UMPtc8uUI1u1SLj2JAxqJcpeu_Hz-g4_5sPFqMBpPhDTqxO2ODARW3qJpnO7hDR_ozX26ze7e_X05fpU0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IECON+2020+The+46th+Annual+Conference+of+the+IEEE+Industrial+Electronics+Society&rft.atitle=Sensor+Fault+Detection+Using+an+Extended+Kalman+Filter+and+Machine+Learning+for+a+Vehicle+Dynamics+Controller&rft.au=Ossig%2C+Daniel+L.&rft.au=Kurzenberger%2C+Kevin&rft.au=Speidel%2C+Simon+A.&rft.au=Henning%2C+Kay-Uwe&rft.date=2020-10-18&rft.pub=IEEE&rft.eissn=2577-1647&rft.spage=361&rft.epage=366&rft_id=info:doi/10.1109%2FIECON43393.2020.9254448&rft.externalDocID=9254448