Routing Sales Territory by Solving a Multi-objective TSP Variant with Evolutionary Algorithms
The Traveling Salesman Problem is a classic NP-hard combinatorial problem. However, many real-world scenarios do not match the classic TSP modeling. Thus, this paper proposes generating vendors' routes in a sales territory by extending and combining different TSP variants. The proposal deals wi...
Gespeichert in:
| Veröffentlicht in: | Proceedings - International Conference on Tools with Artificial Intelligence, TAI S. 109 - 116 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.11.2019
|
| Schlagworte: | |
| ISSN: | 2375-0197 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Traveling Salesman Problem is a classic NP-hard combinatorial problem. However, many real-world scenarios do not match the classic TSP modeling. Thus, this paper proposes generating vendors' routes in a sales territory by extending and combining different TSP variants. The proposal deals with many constraints such as prioritizing the most valuable customers, resource limits to visit all customers, time and day windows, multiple days horizon, lunch stop, visit frequency and destination importance. We also introduce a permutational representation with a series of directed arcs, and with a slot to indicate customers that could not be visited. We evaluate SPEA2, NSGA-II, and IVF/NSGA-II Multi-Objective Evolutionary Algorithms against three real-world scenarios. The results demonstrate that the proposed model can produce good results in a realistic scenario, maintaining a balance between prioritizing important customers and economic routes. Besides, IVF/NSGA-II outperformed the other algorithms in most cases, and also the manually-created routes, e.g., reducing 35% the route's distance and increasing 60% the route's importance. |
|---|---|
| AbstractList | The Traveling Salesman Problem is a classic NP-hard combinatorial problem. However, many real-world scenarios do not match the classic TSP modeling. Thus, this paper proposes generating vendors' routes in a sales territory by extending and combining different TSP variants. The proposal deals with many constraints such as prioritizing the most valuable customers, resource limits to visit all customers, time and day windows, multiple days horizon, lunch stop, visit frequency and destination importance. We also introduce a permutational representation with a series of directed arcs, and with a slot to indicate customers that could not be visited. We evaluate SPEA2, NSGA-II, and IVF/NSGA-II Multi-Objective Evolutionary Algorithms against three real-world scenarios. The results demonstrate that the proposed model can produce good results in a realistic scenario, maintaining a balance between prioritizing important customers and economic routes. Besides, IVF/NSGA-II outperformed the other algorithms in most cases, and also the manually-created routes, e.g., reducing 35% the route's distance and increasing 60% the route's importance. |
| Author | Menezes Sampaio, Savio Camilo-Junior, Celso G. Dantas, Altino |
| Author_xml | – sequence: 1 givenname: Savio surname: Menezes Sampaio fullname: Menezes Sampaio, Savio organization: Institute of Informatics, Federal University of Goias – sequence: 2 givenname: Altino surname: Dantas fullname: Dantas, Altino organization: Institute of Informatics, Federal University of Goias – sequence: 3 givenname: Celso G. surname: Camilo-Junior fullname: Camilo-Junior, Celso G. organization: Institute of Informatics, Federal University of Goias |
| BookMark | eNotjl1PwjAYhavRREDuTbzpH9jsx7q2l4QgkmA0Mr0zpN3eQclYzVZm-PfW6NW5OM95csboqvUtIHRHSUop0Q-reTFbpYxQnRJCWHaBploqKpmiXGqlLtGIcSmSCMgbNO77Q6SIYHyEPt_8Kbh2hzemgR4X0HUu-O6M7RlvfDP8VgY_n5rgEm8PUAY3AC42r_jDdM60AX-7sMeLwTfR41sTp7Nm56Nlf-xv0XVtmh6m_zlB74-LYv6UrF-Wq_lsnThGeEgkk3lWUaJEaa02VlZ5JYkQGUhual2REoBVoLnIbZ1RENSSuuQsz5iUVAk-Qfd_XgcA26_OHeOPrdJaMJrzHze1VdE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICTAI.2019.00024 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Computer Science |
| EISBN | 9781728137988 1728137985 |
| EISSN | 2375-0197 |
| EndPage | 116 |
| ExternalDocumentID | 8995216 |
| Genre | orig-research |
| GroupedDBID | 23M 29O 6IE 6IF 6IH 6IK 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-72764d1085cbb9ab7d6d70554e73af9d0cee2de9356bf41e51b0fc32642771853 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553441500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 07:43:48 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-72764d1085cbb9ab7d6d70554e73af9d0cee2de9356bf41e51b0fc32642771853 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8995216 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Nov. |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings - International Conference on Tools with Artificial Intelligence, TAI |
| PublicationTitleAbbrev | TAI |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020523 |
| Score | 1.7305341 |
| Snippet | The Traveling Salesman Problem is a classic NP-hard combinatorial problem. However, many real-world scenarios do not match the classic TSP modeling. Thus, this... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 109 |
| SubjectTerms | AI Applications Artificial intelligence Combinatorial Optimization Customer Importance Economics Evolutionary computation Frequency Genetic Algorithms IVF/NSGA-II Multi Objective Memetic Algorithm Multi-Objective Problem Planning and scheduling Proposals Routing Sales Territory Schedules Scheduling Scheduling and Allocation Time-frequency analysis Traveling Salesman Problem Traveling salesman problems Urban areas |
| Title | Routing Sales Territory by Solving a Multi-objective TSP Variant with Evolutionary Algorithms |
| URI | https://ieeexplore.ieee.org/document/8995216 |
| WOSCitedRecordID | wos000553441500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gMdETChjf2YNHK9vndo-EQORCSKiGiyHd7lYxSA0FEv-9M21BD1689bFt09ndeX8zAHdeTPBF5VgoX1LLcwW3VIqn2tdhmBpjuF82mxCjUTidynEN7vdYGLxdJJ-ZBzosYvk6SzbkKuugbYDSJjiAAyGCEqu1N67IvbkLQ3LZGfai7pAyt6gcJSc8-6_mKYXsGDT-99UTaP-A8Nh4L15OoWaWTWjsujCwalM24WiHLc5b8EIJPjiaTZDv5yyisosURWfqi02yBTkPWMwK0K2VqfeS2bFoMmbPaDMjkRn5ZVl_Wy3IGB_tLl4zfMvbR96Gp0E_6j1aVQMFa-5wd22hbhJ4mvAFiVIyVkIHmqrneEa4cSo1x19wtJGuH6jUs41vK54mqNB5jhAkyM-gvsyW5hyYm9qxy00qk1h4qAZKHB9yqZE9SScw9gW0iHKzz7JGxqwi2uXfl6_gmKamxPRdQ3292pgbOEy263m-ui0m9hsZTaV1 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmuAJBYxv9-DRytJuW_ZICAQiEhKq4WJIt7tVDFLDK_HfO9MCevDirY9tm87uzvubAbgVIcEXlW2hfIkt4fjcUjGealfX67ExhrtZswm_36-PRnKQg7sdFgZvp8ln5p4O01i-TqIVucqqaBugtPH2YN8VwuYZWmtnXpGDcxuI5LLabQaNLuVuUUFKToj2X-1TUunRLv7vu0dQ-YHhscFOwBxDzsxKUNz2YWCbbVmCwhZdvCjDC6X44Gg2RM6_YAEVXqQ4OlNfbJhMyX3AQpbCbq1EvWfsjgXDAXtGqxnJzMgzy1rrzZIM8dHG9DXBt7x9LCrw1G4FzY61aaFgTWzuLC3UTjyhCWEQKSVD5WtPU_0cYXwnjKXm-Au2NtJxPRWLmnFriscRqnTC9n0S5SeQnyUzcwrMiWuhw00so9AXqAhKHF_nUiODkrZnamdQJsqNP7MqGeMN0c7_vnwDhU7w2Bv3uv2HCzikacoQfpeQX85X5goOovVysphfp5P8DeFAqLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Tools+with+Artificial+Intelligence%2C+TAI&rft.atitle=Routing+Sales+Territory+by+Solving+a+Multi-objective+TSP+Variant+with+Evolutionary+Algorithms&rft.au=Menezes+Sampaio%2C+Savio&rft.au=Dantas%2C+Altino&rft.au=Camilo-Junior%2C+Celso+G.&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2375-0197&rft.spage=109&rft.epage=116&rft_id=info:doi/10.1109%2FICTAI.2019.00024&rft.externalDocID=8995216 |