Routing Sales Territory by Solving a Multi-objective TSP Variant with Evolutionary Algorithms

The Traveling Salesman Problem is a classic NP-hard combinatorial problem. However, many real-world scenarios do not match the classic TSP modeling. Thus, this paper proposes generating vendors' routes in a sales territory by extending and combining different TSP variants. The proposal deals wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings - International Conference on Tools with Artificial Intelligence, TAI S. 109 - 116
Hauptverfasser: Menezes Sampaio, Savio, Dantas, Altino, Camilo-Junior, Celso G.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2019
Schlagworte:
ISSN:2375-0197
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Traveling Salesman Problem is a classic NP-hard combinatorial problem. However, many real-world scenarios do not match the classic TSP modeling. Thus, this paper proposes generating vendors' routes in a sales territory by extending and combining different TSP variants. The proposal deals with many constraints such as prioritizing the most valuable customers, resource limits to visit all customers, time and day windows, multiple days horizon, lunch stop, visit frequency and destination importance. We also introduce a permutational representation with a series of directed arcs, and with a slot to indicate customers that could not be visited. We evaluate SPEA2, NSGA-II, and IVF/NSGA-II Multi-Objective Evolutionary Algorithms against three real-world scenarios. The results demonstrate that the proposed model can produce good results in a realistic scenario, maintaining a balance between prioritizing important customers and economic routes. Besides, IVF/NSGA-II outperformed the other algorithms in most cases, and also the manually-created routes, e.g., reducing 35% the route's distance and increasing 60% the route's importance.
AbstractList The Traveling Salesman Problem is a classic NP-hard combinatorial problem. However, many real-world scenarios do not match the classic TSP modeling. Thus, this paper proposes generating vendors' routes in a sales territory by extending and combining different TSP variants. The proposal deals with many constraints such as prioritizing the most valuable customers, resource limits to visit all customers, time and day windows, multiple days horizon, lunch stop, visit frequency and destination importance. We also introduce a permutational representation with a series of directed arcs, and with a slot to indicate customers that could not be visited. We evaluate SPEA2, NSGA-II, and IVF/NSGA-II Multi-Objective Evolutionary Algorithms against three real-world scenarios. The results demonstrate that the proposed model can produce good results in a realistic scenario, maintaining a balance between prioritizing important customers and economic routes. Besides, IVF/NSGA-II outperformed the other algorithms in most cases, and also the manually-created routes, e.g., reducing 35% the route's distance and increasing 60% the route's importance.
Author Menezes Sampaio, Savio
Camilo-Junior, Celso G.
Dantas, Altino
Author_xml – sequence: 1
  givenname: Savio
  surname: Menezes Sampaio
  fullname: Menezes Sampaio, Savio
  organization: Institute of Informatics, Federal University of Goias
– sequence: 2
  givenname: Altino
  surname: Dantas
  fullname: Dantas, Altino
  organization: Institute of Informatics, Federal University of Goias
– sequence: 3
  givenname: Celso G.
  surname: Camilo-Junior
  fullname: Camilo-Junior, Celso G.
  organization: Institute of Informatics, Federal University of Goias
BookMark eNotjl1PwjAYhavRREDuTbzpH9jsx7q2l4QgkmA0Mr0zpN3eQclYzVZm-PfW6NW5OM95csboqvUtIHRHSUop0Q-reTFbpYxQnRJCWHaBploqKpmiXGqlLtGIcSmSCMgbNO77Q6SIYHyEPt_8Kbh2hzemgR4X0HUu-O6M7RlvfDP8VgY_n5rgEm8PUAY3AC42r_jDdM60AX-7sMeLwTfR41sTp7Nm56Nlf-xv0XVtmh6m_zlB74-LYv6UrF-Wq_lsnThGeEgkk3lWUaJEaa02VlZ5JYkQGUhual2REoBVoLnIbZ1RENSSuuQsz5iUVAk-Qfd_XgcA26_OHeOPrdJaMJrzHze1VdE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICTAI.2019.00024
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Computer Science
EISBN 9781728137988
1728137985
EISSN 2375-0197
EndPage 116
ExternalDocumentID 8995216
Genre orig-research
GroupedDBID 23M
29O
6IE
6IF
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-72764d1085cbb9ab7d6d70554e73af9d0cee2de9356bf41e51b0fc32642771853
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553441500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 07:43:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-72764d1085cbb9ab7d6d70554e73af9d0cee2de9356bf41e51b0fc32642771853
PageCount 8
ParticipantIDs ieee_primary_8995216
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle Proceedings - International Conference on Tools with Artificial Intelligence, TAI
PublicationTitleAbbrev TAI
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020523
Score 1.7305341
Snippet The Traveling Salesman Problem is a classic NP-hard combinatorial problem. However, many real-world scenarios do not match the classic TSP modeling. Thus, this...
SourceID ieee
SourceType Publisher
StartPage 109
SubjectTerms AI Applications
Artificial intelligence
Combinatorial Optimization
Customer Importance
Economics
Evolutionary computation
Frequency
Genetic Algorithms
IVF/NSGA-II
Multi Objective Memetic Algorithm
Multi-Objective Problem
Planning and scheduling
Proposals
Routing
Sales Territory
Schedules
Scheduling
Scheduling and Allocation
Time-frequency analysis
Traveling Salesman Problem
Traveling salesman problems
Urban areas
Title Routing Sales Territory by Solving a Multi-objective TSP Variant with Evolutionary Algorithms
URI https://ieeexplore.ieee.org/document/8995216
WOSCitedRecordID wos000553441500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gMdETChjf2YNHK9vndo-EQORCSKiGiyHd7lYxSA0FEv-9M21BD1689bFt09ndeX8zAHdeTPBF5VgoX1LLcwW3VIqn2tdhmBpjuF82mxCjUTidynEN7vdYGLxdJJ-ZBzosYvk6SzbkKuugbYDSJjiAAyGCEqu1N67IvbkLQ3LZGfai7pAyt6gcJSc8-6_mKYXsGDT-99UTaP-A8Nh4L15OoWaWTWjsujCwalM24WiHLc5b8EIJPjiaTZDv5yyisosURWfqi02yBTkPWMwK0K2VqfeS2bFoMmbPaDMjkRn5ZVl_Wy3IGB_tLl4zfMvbR96Gp0E_6j1aVQMFa-5wd22hbhJ4mvAFiVIyVkIHmqrneEa4cSo1x19wtJGuH6jUs41vK54mqNB5jhAkyM-gvsyW5hyYm9qxy00qk1h4qAZKHB9yqZE9SScw9gW0iHKzz7JGxqwi2uXfl6_gmKamxPRdQ3292pgbOEy263m-ui0m9hsZTaV1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmuAJBYxv9-DRytJuW_ZICAQiEhKq4WJIt7tVDFLDK_HfO9MCevDirY9tm87uzvubAbgVIcEXlW2hfIkt4fjcUjGealfX67ExhrtZswm_36-PRnKQg7sdFgZvp8ln5p4O01i-TqIVucqqaBugtPH2YN8VwuYZWmtnXpGDcxuI5LLabQaNLuVuUUFKToj2X-1TUunRLv7vu0dQ-YHhscFOwBxDzsxKUNz2YWCbbVmCwhZdvCjDC6X44Gg2RM6_YAEVXqQ4OlNfbJhMyX3AQpbCbq1EvWfsjgXDAXtGqxnJzMgzy1rrzZIM8dHG9DXBt7x9LCrw1G4FzY61aaFgTWzuLC3UTjyhCWEQKSVD5WtPU_0cYXwnjKXm-Au2NtJxPRWLmnFriscRqnTC9n0S5SeQnyUzcwrMiWuhw00so9AXqAhKHF_nUiODkrZnamdQJsqNP7MqGeMN0c7_vnwDhU7w2Bv3uv2HCzikacoQfpeQX85X5goOovVysphfp5P8DeFAqLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Tools+with+Artificial+Intelligence%2C+TAI&rft.atitle=Routing+Sales+Territory+by+Solving+a+Multi-objective+TSP+Variant+with+Evolutionary+Algorithms&rft.au=Menezes+Sampaio%2C+Savio&rft.au=Dantas%2C+Altino&rft.au=Camilo-Junior%2C+Celso+G.&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2375-0197&rft.spage=109&rft.epage=116&rft_id=info:doi/10.1109%2FICTAI.2019.00024&rft.externalDocID=8995216