Semi-supervised Variational Autoencoder for WiFi Indoor Localization

We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction model from a small set of annotated WiFi observations and a massive set of non-annotated ones. Our method is based on the variational au-toencode...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Indoor Positioning and Indoor Navigation pp. 1 - 8
Main Authors: Chidlovskii, Boris, Antsfeld, Leonid
Format: Conference Proceeding
Language:English
Published: IEEE 01.09.2019
Subjects:
ISSN:2471-917X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction model from a small set of annotated WiFi observations and a massive set of non-annotated ones. Our method is based on the variational au-toencoder deep network. We complement the network with an additional component of structural projection able to further improve the localization accuracy in a complex, multi-building and multi-floor environment. We consider several different network compositions which combine the classification and regression sub-tasks to achieve optimal performance. We evaluate our method on the public UJI-IndoorLoc dataset and show that the proposed method allows to maintain the state of the art localization accuracy with a very limited amount of annotated data.
AbstractList We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction model from a small set of annotated WiFi observations and a massive set of non-annotated ones. Our method is based on the variational au-toencoder deep network. We complement the network with an additional component of structural projection able to further improve the localization accuracy in a complex, multi-building and multi-floor environment. We consider several different network compositions which combine the classification and regression sub-tasks to achieve optimal performance. We evaluate our method on the public UJI-IndoorLoc dataset and show that the proposed method allows to maintain the state of the art localization accuracy with a very limited amount of annotated data.
Author Antsfeld, Leonid
Chidlovskii, Boris
Author_xml – sequence: 1
  givenname: Boris
  surname: Chidlovskii
  fullname: Chidlovskii, Boris
  organization: Naver Labs Europe,Meylan,France,38240
– sequence: 2
  givenname: Leonid
  surname: Antsfeld
  fullname: Antsfeld, Leonid
  organization: Naver Labs Europe,Meylan,France,38240
BookMark eNotj9FKwzAUhqMouM09gHjTF2jNSdOe5HJMp4WyCQ71bqTtCUS6ZiSdoE-v6K7-7-Ljg3_KLgY_EGM3wDMAru-q52qdCQ46UxpAieKMTQGFAkCl8JxNhERINeD7FZvH-ME5hxKg5GrC7l9o79J4PFD4dJG65NUEZ0bnB9Mni-PoaWh9RyGxPiRvbuWSauj8L9e-Nb37_lOv2aU1faT5aWdsu3rYLp_SevNYLRd16gTPxxRF0YApkFAKaBtUYBHICk3StFAqKi1o0DInbCRxQUaWmlphtVSYm3zGbv-zjoh2h-D2JnztTp_zHxJiTJs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPIN.2019.8911825
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728117887
9781728117881
EISSN 2471-917X
EndPage 8
ExternalDocumentID 8911825
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-725b1a57e7421cb781f71ef29e4ac168e6f191943e7b4e02ea469ec2f94873a3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521571000082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:53:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-725b1a57e7421cb781f71ef29e4ac168e6f191943e7b4e02ea469ec2f94873a3
PageCount 8
ParticipantIDs ieee_primary_8911825
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle International Conference on Indoor Positioning and Indoor Navigation
PublicationTitleAbbrev IPIN
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001611608
Score 2.2848718
Snippet We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Buildings
Data collection
Deep learning
Predictive models
semi-supervised learning
Semisupervised learning
Task analysis
UJI-IndoorLoc dataset
variational auto-encoder
WiFi based indoor localization
Wireless fidelity
Title Semi-supervised Variational Autoencoder for WiFi Indoor Localization
URI https://ieeexplore.ieee.org/document/8911825
WOSCitedRecordID wos000521571000082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA_b8KAXH5v4pgePxjVN2yRHUYeDMQaOudvI4wv0YDu21r_fpC2bghdvIRACXx6_7_c9EboHkA42BGAHNxrH3Bjs_jyLqUMDyRNjZV3UZzFh0ylfLsWsgx52uTAAUAefwaMf1r58U-jKm8qGXHh1OOmiLmNpk6u1t6ekhKQhbx2XJBTDsePFPnbLXYZm3a8GKjV-jI7_t_MJGuwT8YLZDmJOUQfyM3T0o4ZgH728w2eGt9XaP_otmGDh2G9r4QueqrLwlSoNbAKnnQYf2SgLxrkp3HjiUazNwhyg-eh1_vyG29YIOItCWmIWJYrIhIFjtkQrxollBKwTeiw1STmk1hExEVNgKoYwAuloMOjICkdQqKTnqJcXOVz40CZrFFECuFFxYmNhJFBrOFWR1Ta0l6jvxbFaN8UvVq0krv6evkaHXuJNENYN6pWbCm7Rgf4qs-3mrj6xb21RmP0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKagXP6b4bQ8ejWvatE2Ooo4N6xg45m4jbV6gB9extf79Jm3ZFLx4C4EQePn4vd_7BLhDlAY2BBIDNylhXCli_jxNfIMGkgdKy6qozySOhkM-nYpRC-7XuTCIWAWf4YMdVr58laelNZV1ubDqcLAF2wFjnltna20sKiGlocsb1yV1RXdgmLGN3jLXoV75q4VKhSC9g__tfQgnm1Q8Z7QGmSNo4fwY9n9UEezA8zt-ZmRVLuyzX6FyJob_NjY-57EsclurUuHSMfqp85H1MmcwV7kZxxbHmjzMExj3XsZPfdI0RyCZ5_oFibwgoTKI0HBbmiYRpzqiqI3YmUxpyDHUhooJ5mOUMHQ9lIYIY-ppYSiKL_1TaM_zOZ7Z4CatEpoI5CphgWZCSfS14n7i6VS7-hw6VhyzRV3-YtZI4uLv6VvY7Y_f4lk8GL5ewp6Vfh2SdQXtYlniNeykX0W2Wt5Up_cNkUOcRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Indoor+Positioning+and+Indoor+Navigation&rft.atitle=Semi-supervised+Variational+Autoencoder+for+WiFi+Indoor+Localization&rft.au=Chidlovskii%2C+Boris&rft.au=Antsfeld%2C+Leonid&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=2471-917X&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FIPIN.2019.8911825&rft.externalDocID=8911825