Semi-supervised Variational Autoencoder for WiFi Indoor Localization
We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction model from a small set of annotated WiFi observations and a massive set of non-annotated ones. Our method is based on the variational au-toencode...
Saved in:
| Published in: | International Conference on Indoor Positioning and Indoor Navigation pp. 1 - 8 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.09.2019
|
| Subjects: | |
| ISSN: | 2471-917X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction model from a small set of annotated WiFi observations and a massive set of non-annotated ones. Our method is based on the variational au-toencoder deep network. We complement the network with an additional component of structural projection able to further improve the localization accuracy in a complex, multi-building and multi-floor environment. We consider several different network compositions which combine the classification and regression sub-tasks to achieve optimal performance. We evaluate our method on the public UJI-IndoorLoc dataset and show that the proposed method allows to maintain the state of the art localization accuracy with a very limited amount of annotated data. |
|---|---|
| ISSN: | 2471-917X |
| DOI: | 10.1109/IPIN.2019.8911825 |