An EDA-based Genetic Algorithm for EV Charging Scheduling under Surge Demand

With continually increased Electric Vehicles (EVs), the EVs Charging Scheduling is of great importance to managing multiple charging demands for maximizing user satisfactions and minimizing adverse influences on the grid. However, it is challenging to effectively manage EVs charging schedules when a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the ... IEEE International Conference on Services Computing pp. 231 - 238
Main Authors: Li, Tianyang, Li, Xiaolong, He, Ting, Zhang, Yufeng
Format: Conference Proceeding
Language:English
Published: IEEE 01.07.2022
Subjects:
ISSN:2474-2473
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With continually increased Electric Vehicles (EVs), the EVs Charging Scheduling is of great importance to managing multiple charging demands for maximizing user satisfactions and minimizing adverse influences on the grid. However, it is challenging to effectively manage EVs charging schedules when a large number of (on-the-move) EVs are planning to charge at the same time. With this concern, we focus on Charging Station (CS)-selection decision making by the global aggregator that is taken as controller to implement charging management for EVs and CSs. An Estimation of Distribution Algorithm (EDA)-based genetic algorithm is proposed to find constrained charging scheduling plans to maximize the charging efficiency, which may improve user satisfaction and alleviate impacts on the grid. Experimental results under a city scenario with realistic EVs and CSs show the advantage of our proposal, in terms of minimized queuing time and maximized charging performance at both the EV and CS sides. The code and data are available at https://github.com/EV-charging-scheduling-algorithm.
AbstractList With continually increased Electric Vehicles (EVs), the EVs Charging Scheduling is of great importance to managing multiple charging demands for maximizing user satisfactions and minimizing adverse influences on the grid. However, it is challenging to effectively manage EVs charging schedules when a large number of (on-the-move) EVs are planning to charge at the same time. With this concern, we focus on Charging Station (CS)-selection decision making by the global aggregator that is taken as controller to implement charging management for EVs and CSs. An Estimation of Distribution Algorithm (EDA)-based genetic algorithm is proposed to find constrained charging scheduling plans to maximize the charging efficiency, which may improve user satisfaction and alleviate impacts on the grid. Experimental results under a city scenario with realistic EVs and CSs show the advantage of our proposal, in terms of minimized queuing time and maximized charging performance at both the EV and CS sides. The code and data are available at https://github.com/EV-charging-scheduling-algorithm.
Author Li, Tianyang
Zhang, Yufeng
He, Ting
Li, Xiaolong
Author_xml – sequence: 1
  givenname: Tianyang
  surname: Li
  fullname: Li, Tianyang
  organization: Northeast Electric Power University,School of Computer Science,Jilin,China
– sequence: 2
  givenname: Xiaolong
  surname: Li
  fullname: Li, Xiaolong
  email: long1378568805@163.com
  organization: Harbin Branch, Bank of Inner Mongolia Co., Ltd,Harbin,China
– sequence: 3
  givenname: Ting
  surname: He
  fullname: He, Ting
  organization: Huaqiao University,College of Computer Science and Technology,Xiamen,China
– sequence: 4
  givenname: Yufeng
  surname: Zhang
  fullname: Zhang, Yufeng
  organization: University of Birmingham,Birmingham Business School,Birmingham,UK
BookMark eNotj81Og0AYRUejiaX6BN3MC4DzD7MkFKsJiQvUbTMw3wCmDGaAhW9vm7q59yxuTnIjdOcnDwjtKEkoJfq5LgopFaUJI4wlhBDBblBElZIio0LxW7RhIhXxOfgDiub5-zIhlG1QlXtc7vO4MTNYfAAPy9Di_NRNYVj6Ebsp4PILF70J3eA7XLc92PV0wdVbCLheQwd4D6Px9hHdO3Oa4em_t-jzpfwoXuPq_fBW5FU8MMKXWEHKtGzASQOs0UJwSEnjDBjLrWwzKYFCBkQ4a4VORUOdESk4ZcGY8yu-RburdwCA408YRhN-jzpThGrG_wCWDU7i
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCC55611.2022.00042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665481463
9781665481465
EISSN 2474-2473
EndPage 238
ExternalDocumentID 9860192
Genre orig-research
GrantInformation_xml – fundername: Northeast Electric Power University
  funderid: 10.13039/501100015752
GroupedDBID 29P
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-6e7295bef5ae2b9443e70bfaead3d5c855e1e8e04fdd4974b1fa47ef6deaa1663
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858883900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6e7295bef5ae2b9443e70bfaead3d5c855e1e8e04fdd4974b1fa47ef6deaa1663
PageCount 8
ParticipantIDs ieee_primary_9860192
PublicationCentury 2000
PublicationDate 2022-July
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Services Computing
PublicationTitleAbbrev SCC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0042012
Score 1.8349509
Snippet With continually increased Electric Vehicles (EVs), the EVs Charging Scheduling is of great importance to managing multiple charging demands for maximizing...
SourceID ieee
SourceType Publisher
StartPage 231
SubjectTerms charging scheduling
Electric vehicle charging
Estimation
Estimation of Distribution Algorithm
EV charging
genetic algorithm
Processor scheduling
Schedules
Scheduling
Service computing
surge demand
Urban areas
Title An EDA-based Genetic Algorithm for EV Charging Scheduling under Surge Demand
URI https://ieeexplore.ieee.org/document/9860192
WOSCitedRecordID wos000858883900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF3a4sGTSit-swePxma_k2PpBx6kFKrSW9nNTmrBphJbf787Sa0IXryFvQRmQua9nXnzCLnluWDcGQgkBwQSFB3ZAOwj4RkTKtOJc3FlNmHG42Q2SycNcrfXwgBANXwG9_hY9fL9OtviVVk3TTQikiZpGqNrrdb3X1eGQsZ3W4VYnHan_T4aPyID5PVKTv7LP6UqH6Oj_734mHR-dHh0sq8wJ6QBRZs89go6HPQirD-e4trokHvae1usA89_XdGAQunwhWIfHQ2I6DSkxeO8-YKiYKykU1RC0wGsbOE75Hk0fOo_RDtPhGjJY7GJNAQ0rBzkygJ3qZQCTOxyGz4I4VWWKAUMEohl7r0MXMGx3EoDufZgLQvw4pS0inUBZ4QK70Bk3EKmUulAO8tDOi1LjA-0ivFz0sZIzN_rtRfzXRAu_j6-JIcY6nqS9Yq0NuUWrslB9rlZfpQ3Va6-AEmblbs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFfSk0orf7sGjsdndfB5LP6hYS6FVeiu72Ukt2ERq6-93J40VwYu3sJfATMi8tzNvHsCtSCUXOkRLclASQQkcZYG9Iw3n0k-CSGu3MJsIB4NoMomHFbjbamEQsRg-w3t6LHr5Jk_WdFXWiKOAEMkO7JJzVqnW-v7veraUiXKvEHfjxqjVIutH4oBis5RT_HJQKQpI9_B_rz6C-o8Sjw23NeYYKpjVoN_MWKfddKgCGUaLo232WfNtllum_7pgFoeyzgujTjpZELGRTYyhifMZI8nYko1IC83auFCZqcNztzNu9ZzSFcGZC1eunAAtHvY1pr5CoWPPkxi6OlX2k5DGTyLfR44Rul5qjGfZguap8kJMA4NKcQswTqCa5RmeApNGo0yEwsSPPY2BVsImVPEoNJZYcXEGNYrE9H2z-GJaBuH87-Mb2O-Nn_rT_sPg8QIOKOybudZLqK6Wa7yCveRzNf9YXhd5-wJGyJkE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Services+Computing&rft.atitle=An+EDA-based+Genetic+Algorithm+for+EV+Charging+Scheduling+under+Surge+Demand&rft.au=Li%2C+Tianyang&rft.au=Li%2C+Xiaolong&rft.au=He%2C+Ting&rft.au=Zhang%2C+Yufeng&rft.date=2022-07-01&rft.pub=IEEE&rft.eissn=2474-2473&rft.spage=231&rft.epage=238&rft_id=info:doi/10.1109%2FSCC55611.2022.00042&rft.externalDocID=9860192