Precoder Design for Dynamically Sub-connected Hybrid Architecture in MU-MISO-OFDM Systems
Hybrid precoding combined with large-scale antenna arrays is considered as a key enabling technology for millimeter wave (mmWave) communications for its advantages in both reducing the number of power-hungry radio frequency (RF) chains and providing for spatial multiplexing. In this paper, we consid...
Saved in:
| Published in: | IEEE Vehicular Technology Conference pp. 1 - 5 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.11.2020
|
| Subjects: | |
| ISSN: | 2577-2465 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Hybrid precoding combined with large-scale antenna arrays is considered as a key enabling technology for millimeter wave (mmWave) communications for its advantages in both reducing the number of power-hungry radio frequency (RF) chains and providing for spatial multiplexing. In this paper, we consider a dynamically sub-connected hybrid architecture with hardware-efficient low-resolution phase shifters (PSs) for a wide-band mmWave multi-user multi-input single-output orthogonal frequency division multiplexing (MU-MISO-OFDM) system. In this architecture, each RF chain is adaptively connected to a non-overlapping subarray corresponding to channel state information (CSI). Thus, multiple-antenna diversity can be fully utilized to mitigate the performance loss caused by the use of low-resolution PSs. Aiming at maximize the average sum-rate of the considered mmWave MU-MISO-OFDM system, we develop an iterative algorithm based on penalty dual decomposition (PDD) methods. Simulation results demonstrate the advantages of the considered dynamically sub-connected hybrid architecture. |
|---|---|
| ISSN: | 2577-2465 |
| DOI: | 10.1109/VTC2020-Fall49728.2020.9348551 |