Enhanced Android Malware Detection: An SVM-Based Machine Learning Approach

The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious Android applications is a challenge due to the massive number of Android applications and their various properties which provide a large set of features and a spars...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Big Data and Smart Computing s. 75 - 81
Hlavní autoři: Han, Hyoil, Lim, SeungJin, Suh, Kyoungwon, Park, Seonghyun, Cho, Seong-je, Park, Minkyu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.02.2020
Témata:
ISSN:2375-9356
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious Android applications is a challenge due to the massive number of Android applications and their various properties which provide a large set of features and a sparse dataset. We focus on the resources the Android applications call and employ the Application Program Interface (API) calls as features. The dataset used in this work is from an Android environment where malicious and benign applications frequently access the system resources through Android API calls. Since an Android application would invoke a relatively small number of APIs in ordinary scenarios, data in the dataset is inherently sparse and high dimensional. We experimented intensively with 58,602 Android applications as well as 133,227 features (i.e., API Calls). This paper presents a machine-learning-based approach using Support Vector Machines (SVM) to detect malicious Android applications; the new approach delivers results highly competitive with existing approaches.
AbstractList The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious Android applications is a challenge due to the massive number of Android applications and their various properties which provide a large set of features and a sparse dataset. We focus on the resources the Android applications call and employ the Application Program Interface (API) calls as features. The dataset used in this work is from an Android environment where malicious and benign applications frequently access the system resources through Android API calls. Since an Android application would invoke a relatively small number of APIs in ordinary scenarios, data in the dataset is inherently sparse and high dimensional. We experimented intensively with 58,602 Android applications as well as 133,227 features (i.e., API Calls). This paper presents a machine-learning-based approach using Support Vector Machines (SVM) to detect malicious Android applications; the new approach delivers results highly competitive with existing approaches.
Author Suh, Kyoungwon
Han, Hyoil
Lim, SeungJin
Cho, Seong-je
Park, Minkyu
Park, Seonghyun
Author_xml – sequence: 1
  givenname: Hyoil
  surname: Han
  fullname: Han, Hyoil
  organization: Illinois State University
– sequence: 2
  givenname: SeungJin
  surname: Lim
  fullname: Lim, SeungJin
  organization: Merrimack College
– sequence: 3
  givenname: Kyoungwon
  surname: Suh
  fullname: Suh, Kyoungwon
  organization: Illinois State University
– sequence: 4
  givenname: Seonghyun
  surname: Park
  fullname: Park, Seonghyun
  organization: Dankook University
– sequence: 5
  givenname: Seong-je
  surname: Cho
  fullname: Cho, Seong-je
  organization: Dankook University
– sequence: 6
  givenname: Minkyu
  surname: Park
  fullname: Park, Minkyu
  organization: Konkuk University
BookMark eNotjMlOwzAUAA0Cibb0CziQH3B49ku8cEvTsikVB5ZrZZyX1qh1oiQS4u8pgtNIM9JM2VlsIzF2LSAVAuzNImzL9tBlRgmTSpCQAnCrTthUaGmEAszglE0k6pxbzNUFmw_DJwAIq6zUMGFPq7hz0VOdFLHu21Ana7f_cj0lSxrJj6GNt8eUvLyv-cIN9Nv9LkRKKnJ9DHGbFF3Xt0d5yc4btx9o_s8Ze7tbvZYPvHq-fyyLigcJOHLlLZAx2uaoMNNgNTaY1VJrJchg_pEbML7WqskIm8Y2UnkjkUxWay-Nxxm7-vsGItp0fTi4_ntjQYMCgz8zRU6S
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigComp48618.2020.00-96
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728160340
9781728160344
EISSN 2375-9356
EndPage 81
ExternalDocumentID 9070608
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-6c90e88795363470973f34d27761e835b5808cd76f4e3ff9f26c823e84d7c28c3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569987500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:42:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6c90e88795363470973f34d27761e835b5808cd76f4e3ff9f26c823e84d7c28c3
PageCount 7
ParticipantIDs ieee_primary_9070608
PublicationCentury 2000
PublicationDate 2020-Feb.
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-Feb.
PublicationDecade 2020
PublicationTitle International Conference on Big Data and Smart Computing
PublicationTitleAbbrev BIGCOMP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969270
Score 1.9591528
Snippet The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious Android applications is...
SourceID ieee
SourceType Publisher
StartPage 75
SubjectTerms Android Malware Detection
Androids
API Calls
Feature extraction
Humanoid robots
Machine learning
Malware
Static analysis
Support vector machines
Title Enhanced Android Malware Detection: An SVM-Based Machine Learning Approach
URI https://ieeexplore.ieee.org/document/9070608
WOSCitedRecordID wos000569987500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6QePDkA4zv9ODRSrctfXgThRgTCImPcCO77RQ3MYvBRf--27LCxYu3Pg5NpplMO_PN9yF0yTPwThhJgIIlQgpDtAtTXj1PhM-MM2kUm1CjkZ5MzLiBrta9MAAQwWdwHYaxlu_mdhlSZZ3qI0dl6OzdUkqterU2-RQjDVO0hnAl1HR6-Sz4lNAyCRguFjBcJJLzb2RUYhQZ7P7v_D3U3rTj4fE60OyjBhQHaPdXjwHX7tlCj_3iLRb0cYApznOHh-n7d7oAfA9lhFwVN9UWfnodkl4VvcJ-gFICrllWZ_i2phhvo5dB__nugdRaCSRnlJdEWkNBB-VwLrlQgYTHc-GYUjKB6pWVdTXV1inpBXDvjWfSasZBC6cs05YfomYxL-AIYZNWTgygmUq5sLqrU5PxLNEycL2BpseoFUwz_VjRYUxrq5z8vXyKdoLtV0DnM9QsF0s4R9v2q8w_FxfxDn8AbGybbQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2ImugJFYzf9uDRSrct_fAmCkEFQiIabmS3O4ubmMXgon_fbVnh4sVb27k0bSYznb55D6FLHkESCyMJULBESGGIjt2UF-mJSCITm9CLTajBQI_HZlhBV6teGADw4DO4dkP_lx_P7MKVyhrFQ45K19m72RSCBcturXVFxUjDFC1BXAE1jVY6dV4ltAwcios5FBfx9PxrIRUfRzrV_-1gF9XXDXl4uAo1e6gC2T6q_ioy4NJBa-ixnb35L33sgIqzNMb98P07nAO-h9yDrrKbwoSfX_ukVcQvZ3dgSsAlz-oU35Yk43X00mmP7rqkVEsgKaM8J9IaCtpph3PJhXI0PAkXMVNKBlDkWVFTU21jJRMBPElMwqTVjIMWsbJMW36ANrJZBocIm7BwYwDNVMiF1U0dmohHgZaO7Q00PUI1dzSTjyUhxqQ8leO_ly_QdnfU7016D4OnE7Tj7mEJez5FG_l8AWdoy37l6ef83N_nD7VInrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Enhanced+Android+Malware+Detection%3A+An+SVM-Based+Machine+Learning+Approach&rft.au=Han%2C+Hyoil&rft.au=Lim%2C+SeungJin&rft.au=Suh%2C+Kyoungwon&rft.au=Park%2C+Seonghyun&rft.date=2020-02-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=75&rft.epage=81&rft_id=info:doi/10.1109%2FBigComp48618.2020.00-96&rft.externalDocID=9070608