Enhanced Android Malware Detection: An SVM-Based Machine Learning Approach
The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious Android applications is a challenge due to the massive number of Android applications and their various properties which provide a large set of features and a spars...
Uloženo v:
| Vydáno v: | International Conference on Big Data and Smart Computing s. 75 - 81 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.02.2020
|
| Témata: | |
| ISSN: | 2375-9356 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious Android applications is a challenge due to the massive number of Android applications and their various properties which provide a large set of features and a sparse dataset. We focus on the resources the Android applications call and employ the Application Program Interface (API) calls as features. The dataset used in this work is from an Android environment where malicious and benign applications frequently access the system resources through Android API calls. Since an Android application would invoke a relatively small number of APIs in ordinary scenarios, data in the dataset is inherently sparse and high dimensional. We experimented intensively with 58,602 Android applications as well as 133,227 features (i.e., API Calls). This paper presents a machine-learning-based approach using Support Vector Machines (SVM) to detect malicious Android applications; the new approach delivers results highly competitive with existing approaches. |
|---|---|
| AbstractList | The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious Android applications is a challenge due to the massive number of Android applications and their various properties which provide a large set of features and a sparse dataset. We focus on the resources the Android applications call and employ the Application Program Interface (API) calls as features. The dataset used in this work is from an Android environment where malicious and benign applications frequently access the system resources through Android API calls. Since an Android application would invoke a relatively small number of APIs in ordinary scenarios, data in the dataset is inherently sparse and high dimensional. We experimented intensively with 58,602 Android applications as well as 133,227 features (i.e., API Calls). This paper presents a machine-learning-based approach using Support Vector Machines (SVM) to detect malicious Android applications; the new approach delivers results highly competitive with existing approaches. |
| Author | Suh, Kyoungwon Han, Hyoil Lim, SeungJin Cho, Seong-je Park, Minkyu Park, Seonghyun |
| Author_xml | – sequence: 1 givenname: Hyoil surname: Han fullname: Han, Hyoil organization: Illinois State University – sequence: 2 givenname: SeungJin surname: Lim fullname: Lim, SeungJin organization: Merrimack College – sequence: 3 givenname: Kyoungwon surname: Suh fullname: Suh, Kyoungwon organization: Illinois State University – sequence: 4 givenname: Seonghyun surname: Park fullname: Park, Seonghyun organization: Dankook University – sequence: 5 givenname: Seong-je surname: Cho fullname: Cho, Seong-je organization: Dankook University – sequence: 6 givenname: Minkyu surname: Park fullname: Park, Minkyu organization: Konkuk University |
| BookMark | eNotjMlOwzAUAA0Cibb0CziQH3B49ku8cEvTsikVB5ZrZZyX1qh1oiQS4u8pgtNIM9JM2VlsIzF2LSAVAuzNImzL9tBlRgmTSpCQAnCrTthUaGmEAszglE0k6pxbzNUFmw_DJwAIq6zUMGFPq7hz0VOdFLHu21Ana7f_cj0lSxrJj6GNt8eUvLyv-cIN9Nv9LkRKKnJ9DHGbFF3Xt0d5yc4btx9o_s8Ze7tbvZYPvHq-fyyLigcJOHLlLZAx2uaoMNNgNTaY1VJrJchg_pEbML7WqskIm8Y2UnkjkUxWay-Nxxm7-vsGItp0fTi4_ntjQYMCgz8zRU6S |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BigComp48618.2020.00-96 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1728160340 9781728160344 |
| EISSN | 2375-9356 |
| EndPage | 81 |
| ExternalDocumentID | 9070608 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-6c90e88795363470973f34d27761e835b5808cd76f4e3ff9f26c823e84d7c28c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569987500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:42:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-6c90e88795363470973f34d27761e835b5808cd76f4e3ff9f26c823e84d7c28c3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9070608 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Feb. |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-Feb. |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Big Data and Smart Computing |
| PublicationTitleAbbrev | BIGCOMP |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001969270 |
| Score | 1.9591528 |
| Snippet | The cybersecurity of increasing numbers of mobile devices and their users are threatened by malicious applications. Detecting malicious Android applications is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 75 |
| SubjectTerms | Android Malware Detection Androids API Calls Feature extraction Humanoid robots Machine learning Malware Static analysis Support vector machines |
| Title | Enhanced Android Malware Detection: An SVM-Based Machine Learning Approach |
| URI | https://ieeexplore.ieee.org/document/9070608 |
| WOSCitedRecordID | wos000569987500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6QePDkA4zv9ODRSrctfXgThRgTCImPcCO77RQ3MYvBRf--27LCxYu3Pg5NpplMO_PN9yF0yTPwThhJgIIlQgpDtAtTXj1PhM-MM2kUm1CjkZ5MzLiBrta9MAAQwWdwHYaxlu_mdhlSZZ3qI0dl6OzdUkqterU2-RQjDVO0hnAl1HR6-Sz4lNAyCRguFjBcJJLzb2RUYhQZ7P7v_D3U3rTj4fE60OyjBhQHaPdXjwHX7tlCj_3iLRb0cYApznOHh-n7d7oAfA9lhFwVN9UWfnodkl4VvcJ-gFICrllWZ_i2phhvo5dB__nugdRaCSRnlJdEWkNBB-VwLrlQgYTHc-GYUjKB6pWVdTXV1inpBXDvjWfSasZBC6cs05YfomYxL-AIYZNWTgygmUq5sLqrU5PxLNEycL2BpseoFUwz_VjRYUxrq5z8vXyKdoLtV0DnM9QsF0s4R9v2q8w_FxfxDn8AbGybbQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2ImugJFYzf9uDRSrct_fAmCkEFQiIabmS3O4ubmMXgon_fbVnh4sVb27k0bSYznb55D6FLHkESCyMJULBESGGIjt2UF-mJSCITm9CLTajBQI_HZlhBV6teGADw4DO4dkP_lx_P7MKVyhrFQ45K19m72RSCBcturXVFxUjDFC1BXAE1jVY6dV4ltAwcios5FBfx9PxrIRUfRzrV_-1gF9XXDXl4uAo1e6gC2T6q_ioy4NJBa-ixnb35L33sgIqzNMb98P07nAO-h9yDrrKbwoSfX_ukVcQvZ3dgSsAlz-oU35Yk43X00mmP7rqkVEsgKaM8J9IaCtpph3PJhXI0PAkXMVNKBlDkWVFTU21jJRMBPElMwqTVjIMWsbJMW36ANrJZBocIm7BwYwDNVMiF1U0dmohHgZaO7Q00PUI1dzSTjyUhxqQ8leO_ly_QdnfU7016D4OnE7Tj7mEJez5FG_l8AWdoy37l6ef83N_nD7VInrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Enhanced+Android+Malware+Detection%3A+An+SVM-Based+Machine+Learning+Approach&rft.au=Han%2C+Hyoil&rft.au=Lim%2C+SeungJin&rft.au=Suh%2C+Kyoungwon&rft.au=Park%2C+Seonghyun&rft.date=2020-02-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=75&rft.epage=81&rft_id=info:doi/10.1109%2FBigComp48618.2020.00-96&rft.externalDocID=9070608 |