Machine Learning and Modeling of Ultrasonic Signals for High-Fidelity Data Compression

Ultrasonic systems are widely used in imaging applications for non-destructive evaluation, quality assurance, and medical diagnosis. These applications require large volumes of data to be processed, stored, and/or transmitted in real time. It is essential to compress the ultrasonic RF signal without...

Full description

Saved in:
Bibliographic Details
Published in:IEEE International Ultrasonics Symposium (Online) pp. 1 - 9
Main Authors: Saniie, Jafar, Govindan, Pramod, Wang, Boyang, Zhang, Xin, Lu, Yufeng, Oruklu, Erdal
Format: Conference Proceeding
Language:English
Published: IEEE 10.10.2022
Subjects:
ISSN:1948-5727
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ultrasonic systems are widely used in imaging applications for non-destructive evaluation, quality assurance, and medical diagnosis. These applications require large volumes of data to be processed, stored, and/or transmitted in real time. It is essential to compress the ultrasonic RF signal without inadvertently degrading desirable signal features. This study explores the development of learning models for massive data compression based on wavelet packet transformation, using machine learning techniques. Furthermore, this study utilizes the fast chirplet transform algorithm to successively estimate broadband, narrowband, symmetric, skewed, nondispersive, or dispersive echoes. These parameters not only have significant physical interpretations for radar, sonar, seismic, and ultrasonic applications but also, yield a method for efficient and high-precision data compression. Signal modeling and parameter estimation of the nonstationary ultrasonic echoes are critical for image analysis, target detection, and object recognition. The objective of this study is to design computationally efficient algorithms and the implementation of 3D ultrasonic data compression.
AbstractList Ultrasonic systems are widely used in imaging applications for non-destructive evaluation, quality assurance, and medical diagnosis. These applications require large volumes of data to be processed, stored, and/or transmitted in real time. It is essential to compress the ultrasonic RF signal without inadvertently degrading desirable signal features. This study explores the development of learning models for massive data compression based on wavelet packet transformation, using machine learning techniques. Furthermore, this study utilizes the fast chirplet transform algorithm to successively estimate broadband, narrowband, symmetric, skewed, nondispersive, or dispersive echoes. These parameters not only have significant physical interpretations for radar, sonar, seismic, and ultrasonic applications but also, yield a method for efficient and high-precision data compression. Signal modeling and parameter estimation of the nonstationary ultrasonic echoes are critical for image analysis, target detection, and object recognition. The objective of this study is to design computationally efficient algorithms and the implementation of 3D ultrasonic data compression.
Author Zhang, Xin
Wang, Boyang
Saniie, Jafar
Govindan, Pramod
Oruklu, Erdal
Lu, Yufeng
Author_xml – sequence: 1
  givenname: Jafar
  surname: Saniie
  fullname: Saniie, Jafar
  organization: Embedded Computing and Signal Processing Research Laboratory
– sequence: 2
  givenname: Pramod
  surname: Govindan
  fullname: Govindan, Pramod
  organization: Embedded Computing and Signal Processing Research Laboratory
– sequence: 3
  givenname: Boyang
  surname: Wang
  fullname: Wang, Boyang
  organization: Embedded Computing and Signal Processing Research Laboratory
– sequence: 4
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: Embedded Computing and Signal Processing Research Laboratory
– sequence: 5
  givenname: Yufeng
  surname: Lu
  fullname: Lu, Yufeng
  organization: Embedded Computing and Signal Processing Research Laboratory
– sequence: 6
  givenname: Erdal
  surname: Oruklu
  fullname: Oruklu, Erdal
  organization: Embedded Computing and Signal Processing Research Laboratory
BookMark eNotkMFOAjEURavRREC-wJj0Bwbb1752ZmlQhATiAjHuyLPTQg20ZGY2_D0QWdyc3OTkLm6f3aWcPGPPUoykFNXLbLVErUozAgEwqiq0VsEN60tjUJ9jf25ZT1a6LNCCfWDDtv0TQigFwgL22PeC3DYmz-eemhTThlOq-SLXfncpOfDVrmuozSk6voybRLuWh9zwadxsi0m8eN2Rv1FHfJz3h8a3bczpkd2Hs-mHVw7YavL-NZ4W88-P2fh1XkQQqisMOaiDtE7UBo0IpUPrQlCknK5ChRJFCWTUr0YCqUgqiVqcVUTQUoIasKf_3ei9Xx-auKfmuL7eoE5B1lKg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IUS54386.2022.9957732
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 166546657X
9781665466578
EISSN 1948-5727
EndPage 9
ExternalDocumentID 9957732
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-6ac2df17c0d6560f8c57cff3a3c49f9515082a63b45a213a13154065655241123
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896080400198&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:52:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6ac2df17c0d6560f8c57cff3a3c49f9515082a63b45a213a13154065655241123
PageCount 9
ParticipantIDs ieee_primary_9957732
PublicationCentury 2000
PublicationDate 2022-Oct.-10
PublicationDateYYYYMMDD 2022-10-10
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle IEEE International Ultrasonics Symposium (Online)
PublicationTitleAbbrev IUS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003320725
Score 1.8169247
Snippet Ultrasonic systems are widely used in imaging applications for non-destructive evaluation, quality assurance, and medical diagnosis. These applications require...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Chirp
Computational modeling
Data compression
Machine learning
Machine learning algorithms
Three-dimensional displays
Title Machine Learning and Modeling of Ultrasonic Signals for High-Fidelity Data Compression
URI https://ieeexplore.ieee.org/document/9957732
WOSCitedRecordID wos000896080400198&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxFHzU4kEvfrTiNzl4NG02n5uzWhS0FGpLbyWbZEtBtqXd-vtNtktV8OJtCSyBvOXNkJ2ZB3CXha_GBFjA3mcS84w5rK3xWCqjslSE1SqBb_yq-v10MtGDBtzvvDDe-0p85jvxsfqX7xZ2E6_KuloLpVhouHtKya1Xa3efwhgliorapJMQ3X0ZDQVnadQhUNqp3_01RKXCkN7R_3Y_hva3GQ8NdjBzAg1fnMLhjxzBFozfKkmkR3Va6gyZwqE45iyazdEiR6OPcmXWMQYXDeezmJmMAltFUeWBezHpKpBx9GhKg2KD2GpjizaMek_vD8-4HpiA55SwEktjqcsTZYmLmTp5aoWyec4Ms1zngUsFNkaNZBkXhibMJCwQqMBBpBAByAOGnUGzWBT-HJBOVahbKiT3hDtnDfVCEc61sUIzbi-gFU9outxmYkzrw7n8e_kKDmIRYs9PyDU0y9XG38C-_Szn69VtVcgv1PCePg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP0YKqgvXqZ4Nw8-mq3NpWme1bHhNga7sLeRpqkMpJOt8_ebrytTwRffSqAE8oWcQ3LO-QAeEr9rjIcF6lwSUZHwlGprHI2UUUks_WiZwDfpqn4_nk71oAaPWy-Mc64Un7kGfpZv-enCrvGqrKm1VIr7A3cXO2dVbq3tjQrnLFBMVjadMNDNzngoBY9RicBYo_r7VxuVEkVaR_-b_xjOvu14ZLAFmhOoufwUDn8kCdZh0itFkY5UealvxOQpwUZnaDcni4yM34ulWWEQLhnO3zA1mXi-SlDnQVuYdeXpOHk2hSF4RGzUsfkZjFsvo6c2rVom0DkLeEEjY1mahcoGKabqZLGVymYZN9wKnXk25fkYMxFPhDQs5CbknkJ5FhJJ6aHco9g57OSL3F0A0bHylYtlJFwg0tQa5qQKhNDGSs2FvYQ6rtDsY5OKMasW5-rv4XvYb4963Vm303-9hgMsCCJAGNzATrFcu1vYs5_FfLW8K4v6BUXHoYc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Ultrasonics+Symposium+%28Online%29&rft.atitle=Machine+Learning+and+Modeling+of+Ultrasonic+Signals+for+High-Fidelity+Data+Compression&rft.au=Saniie%2C+Jafar&rft.au=Govindan%2C+Pramod&rft.au=Wang%2C+Boyang&rft.au=Zhang%2C+Xin&rft.date=2022-10-10&rft.pub=IEEE&rft.eissn=1948-5727&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FIUS54386.2022.9957732&rft.externalDocID=9957732