A Modified Clustering Using Representatives to Enhance and Optimize Tracking and Monitoring of Maritime Traffic in Real-time Using Automatic Identification System Data

In this paper, we introduce a modification of the Clustering Using Representatives (CURE) algorithm to enhance and optimize the tracking and monitoring of maritime traffic in real-time using the Automatic Identification System (AIS) data. In doing so, we present a 2-D points data collection system f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 International Conference on Computational Science and Computational Intelligence (CSCI) S. 285 - 289
Hauptverfasser: Manyfield-Donald, Cheronika, Kwembe, Tor A., Cheng, Jing-Ru C.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we introduce a modification of the Clustering Using Representatives (CURE) algorithm to enhance and optimize the tracking and monitoring of maritime traffic in real-time using the Automatic Identification System (AIS) data. In doing so, we present a 2-D points data collection system for the utilization of a modified unsupervised machine learning clustering method of the CURE algorithm integrated with a data streaming algorithm to develop a more efficient method that will directly assist in adverting accidents and support in vessels avoiding dangerous environments. Results are presented that show tracking in inland as well as open sea waterways.
AbstractList In this paper, we introduce a modification of the Clustering Using Representatives (CURE) algorithm to enhance and optimize the tracking and monitoring of maritime traffic in real-time using the Automatic Identification System (AIS) data. In doing so, we present a 2-D points data collection system for the utilization of a modified unsupervised machine learning clustering method of the CURE algorithm integrated with a data streaming algorithm to develop a more efficient method that will directly assist in adverting accidents and support in vessels avoiding dangerous environments. Results are presented that show tracking in inland as well as open sea waterways.
Author Kwembe, Tor A.
Manyfield-Donald, Cheronika
Cheng, Jing-Ru C.
Author_xml – sequence: 1
  givenname: Cheronika
  surname: Manyfield-Donald
  fullname: Manyfield-Donald, Cheronika
  email: cheronika.n.manyfield@students.jsums.edu
  organization: Jackson State University,Computational Data-Enabled Science and Engineering,Jackson,MS,USA,39217
– sequence: 2
  givenname: Tor A.
  surname: Kwembe
  fullname: Kwembe, Tor A.
  email: tor.a.kwembe@jsums.edu
  organization: Jackson State University,Department of Mathematics and Statistical Sciences,Jackson,MS,USA,39217
– sequence: 3
  givenname: Jing-Ru C.
  surname: Cheng
  fullname: Cheng, Jing-Ru C.
  email: ruth.c.cheng@erdc.dren.mil
  organization: Engineer Research and Development Center U.S. Army Corps of Engineers,Information Technology Lab.,Vicksburg,MS,USA,39180
BookMark eNotjtFOAjEQRWuiD4J-gT70BxbbbrdsH8mKugmEROCZDO2sNrIt2S0m-EP-pgV8mcnc3Dn3Dsi1Dx4JeeRsxDnTT9WyqguphRoJJviIMc71FRlwpQpZlJKzW_I7ofNgXePQ0mp36CN2zn_QdX-a77jvsEcfIbpv7GkMdOo_wRuk4C1d7KNr3Q_SVQfm6_RwUufBuxjOlNDQOXQuuc6epnGGOp-wsMvO4iVmcoihTRGG1jaFpTImXcHT5TH1aekzRLgjNw3serz_30Oyfpmuqrdstnitq8ksc4LlMVMglVAaAUGAsmpbCpDGSiO3zOrCyqaAElFKlHlZgipQCtaMeWFKhWMt8yF5uHAdIm72nWuhO270WGvGZf4HISVsig
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSCI54926.2021.00119
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665458410
9781665458412
EndPage 289
ExternalDocumentID 9799014
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-6a46269eaea2a6d6b82a4cd4c4b0d95d4f5a8ee44e4388a65e420f715c86e7943
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832229300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:15 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6a46269eaea2a6d6b82a4cd4c4b0d95d4f5a8ee44e4388a65e420f715c86e7943
PageCount 5
ParticipantIDs ieee_primary_9799014
PublicationCentury 2000
PublicationDate 2021-Dec.
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationTitle 2021 International Conference on Computational Science and Computational Intelligence (CSCI)
PublicationTitleAbbrev CSCI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.778109
Snippet In this paper, we introduce a modification of the Clustering Using Representatives (CURE) algorithm to enhance and optimize the tracking and monitoring of...
SourceID ieee
SourceType Publisher
StartPage 285
SubjectTerms Automatic Identification System
Big Data
Clustering algorithms
Clustering methods
Clustering Using Representatives (CURE)
Data collection
Machine learning
Machine learning algorithms
Scientific computing
Tracking
Title A Modified Clustering Using Representatives to Enhance and Optimize Tracking and Monitoring of Maritime Traffic in Real-time Using Automatic Identification System Data
URI https://ieeexplore.ieee.org/document/9799014
WOSCitedRecordID wos000832229300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxcAEqEW85YGR0DxsJx6r0AqGloqH1K1y4rOI1CaoTTrwh_ib-BEVIbGwRNE5siWf7Ms9vu8QuhEslxAA8yhXzCMUlJck-kGjGGKqQNHMNZuIp9NkPuezDrrdYWEAwBafwZ15tbl8WeWNCZUNTArKN12r9-KYOaxWi4YLfD5IX9JHwzdmCg_CwKYY-K-eKdZkjA__t9gR6v9g7_BsZ1WOUQfKHvoa4kklC6X_F3G6bAy5gR7ENt-Pn20xq8MQbWGD6wqPynejTSxKiZ_0pbAqPgFrs5SbwLiVurNsZ6kUngjDbbSy3xhOCVyUelqx9KzQLTNs6sryu2IH7lVttA870nN8L2rRR2_j0Wv64LUtFrwi9KPaY4Joj4aDABEKJlmWhILkkuQk8yWnkigqEgBCgERJIhgFEvoqDmieMDDccieoW1YlnCKs_TwZZ9qDi0hEGPOFzITiRHAVmORgdIZ6ZpMXH45FY9Hu7_nf4gt0YLToCkcuUbdeN3CF9vNtXWzW11b135v0tWY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jCnpS2cTf5uDRuv5I0vY46saG2xw6YbeRNi9Y2FrZ2h38h_w3TdIyEbx4KeW1JJC0fX3ve9_3ELrjLBHgALNoKJlFKEgrCNSBej74VIKkcdVswp9Mgvk8nDbQ_Y4LAwCm-Awe9KnB8kWelDpV1tEQlK27Vu_pzlk1W6vmwzl22Ileo6FWHNOlB65jQIbwV9cU4zT6R_-b7hi1f9h3eLrzKyeoAVkLfXXxOBepVH-MOFqWWt5AXcQG8ccvppy1YhFtYYOLHPeyd72fmGcCP6vPwir9BKwcU6JT48Zavc1mlFziMdfqRitzj1aVwGmmhuVLyxirabplkRuFV1zRe2Wd78OV7Dl-5AVvo7d-bxYNrLrJgpW6tldYjBMV04TAgbucCRYHLieJIAmJbRFSQSTlAQAhQLwg4IwCcW3pOzQJGGh1uVPUzPIMzhBWkZ7wYxXDecQjjNlcxFyGhIfS0fCgd45aepEXH5WOxqJe34u_zbfoYDAbjxaj4eTpEh3qHa3KSK5Qs1iXcI32k22RbtY35jH4BjV6uK8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Computational+Science+and+Computational+Intelligence+%28CSCI%29&rft.atitle=A+Modified+Clustering+Using+Representatives+to+Enhance+and+Optimize+Tracking+and+Monitoring+of+Maritime+Traffic+in+Real-time+Using+Automatic+Identification+System+Data&rft.au=Manyfield-Donald%2C+Cheronika&rft.au=Kwembe%2C+Tor+A.&rft.au=Cheng%2C+Jing-Ru+C.&rft.date=2021-12-01&rft.pub=IEEE&rft.spage=285&rft.epage=289&rft_id=info:doi/10.1109%2FCSCI54926.2021.00119&rft.externalDocID=9799014