A Spanning Tree-based Genetic Algorithm for Distribution Network Reconfiguration

This paper presents a spanning tree-based genetic algorithm (GA) for the reconfiguration of electrical distribution systems with the objective of minimizing active power losses. Due to low voltage levels at distribution systems, power losses are very high and sensitive to system configuration. There...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Conference record of the Industry Applications Conference s. 1 - 6
Hlavní autori: Gautam, Mukesh, Bhusal, Narayan, Benidris, Mohammed, Louis, Sushil J.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 10.10.2020
Predmet:
ISSN:2576-702X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents a spanning tree-based genetic algorithm (GA) for the reconfiguration of electrical distribution systems with the objective of minimizing active power losses. Due to low voltage levels at distribution systems, power losses are very high and sensitive to system configuration. Therefore, optimal reconfiguration is an important factor in the operation of distribution systems to minimize active power losses. Smart and automated electric distribution systems should be able to reconfigure as a response to changes in load levels to minimize active power losses. The proposed method searches spanning trees of potential configurations and finds the optimal spanning tree using genetic algorithm in two steps. In the first step, all the invalid combinations of branches and tie-lines (e.g. combinations which are not supplying power to some of loads) generated by initial population of GA are filtered out with the help of spanning tree search algorithm. In this second step, power flow analyses are performed for only those combinations that form spanning trees and the optimal configuration is determined based on the amount of active power losses (optimal configuration is one which results minimum power losses). The proposed method is implemented on several systems including the well-known 33-node and 69-node systems. The results show that the proposed method is accurate and efficient in comparison with existing methods.
AbstractList This paper presents a spanning tree-based genetic algorithm (GA) for the reconfiguration of electrical distribution systems with the objective of minimizing active power losses. Due to low voltage levels at distribution systems, power losses are very high and sensitive to system configuration. Therefore, optimal reconfiguration is an important factor in the operation of distribution systems to minimize active power losses. Smart and automated electric distribution systems should be able to reconfigure as a response to changes in load levels to minimize active power losses. The proposed method searches spanning trees of potential configurations and finds the optimal spanning tree using genetic algorithm in two steps. In the first step, all the invalid combinations of branches and tie-lines (e.g. combinations which are not supplying power to some of loads) generated by initial population of GA are filtered out with the help of spanning tree search algorithm. In this second step, power flow analyses are performed for only those combinations that form spanning trees and the optimal configuration is determined based on the amount of active power losses (optimal configuration is one which results minimum power losses). The proposed method is implemented on several systems including the well-known 33-node and 69-node systems. The results show that the proposed method is accurate and efficient in comparison with existing methods.
Author Benidris, Mohammed
Gautam, Mukesh
Bhusal, Narayan
Louis, Sushil J.
Author_xml – sequence: 1
  givenname: Mukesh
  surname: Gautam
  fullname: Gautam, Mukesh
  email: mukesh.gautam@nevada.unr.edu
  organization: University of Nevada,Department of Electrical and Biomedical Engineering,Reno,NV,USA,89557
– sequence: 2
  givenname: Narayan
  surname: Bhusal
  fullname: Bhusal, Narayan
  email: bhusalnarayan62@nevada.unr.edu
  organization: University of Nevada,Department of Electrical and Biomedical Engineering,Reno,NV,USA,89557
– sequence: 3
  givenname: Mohammed
  surname: Benidris
  fullname: Benidris, Mohammed
  email: mbenidris@unr.edu
  organization: University of Nevada,Department of Electrical and Biomedical Engineering,Reno,NV,USA,89557
– sequence: 4
  givenname: Sushil J.
  surname: Louis
  fullname: Louis, Sushil J.
  email: sushil@cse.unr.edu
  organization: University of Nevada,Department of Computer Science and Engineering,Reno,NV,USA,89557
BookMark eNotkM1KAzEURqMoaGufQIS8wNSbZPK3HKrWQlGxFdyVZOamRttMyUwR396KXRw-OItvcQbkLLUJCblhMGYM7O2sWpSl1WbMgcPYClEaZk_I6KCY5geY5XBKLrnUqtDA3y_IoOs-AUAYxS7JS0UXO5dSTGu6zIiFdx02dIoJ-1jTarNuc-w_tjS0md7Frs_R7_vYJvqE_Xebv-gr1m0Kcb3P7s9fkfPgNh2Ojjskbw_3y8ljMX-ezibVvIgcRF8oBy6owLgVjdFON1xoaTzUkhnFa8GsChJLCJ4JpSRICeB9aTxruFdMiCG5_v-NiLja5bh1-Wd1DCB-AS20USk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IAS44978.2020.9334819
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISBN 9781728171920
172817192X
EISSN 2576-702X
EndPage 6
ExternalDocumentID 9334819
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IM
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIO
RNS
ID FETCH-LOGICAL-i203t-6a0af6f1293d87a7d23758b0c51862c3196f5e40fb1366505500bb48b1d2b6133
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680413800112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 05:52:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6a0af6f1293d87a7d23758b0c51862c3196f5e40fb1366505500bb48b1d2b6133
PageCount 6
ParticipantIDs ieee_primary_9334819
PublicationCentury 2000
PublicationDate 2020-Oct.-10
PublicationDateYYYYMMDD 2020-10-10
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle Conference record of the Industry Applications Conference
PublicationTitleAbbrev IAS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003861
Score 2.241592
Snippet This paper presents a spanning tree-based genetic algorithm (GA) for the reconfiguration of electrical distribution systems with the objective of minimizing...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Active filters
Distribution system
Filtering algorithms
genetic algorithm
Genetic algorithms
Load flow analysis
Low voltage
network reconfiguration
power loss
Sociology
spanning tree
Statistics
Title A Spanning Tree-based Genetic Algorithm for Distribution Network Reconfiguration
URI https://ieeexplore.ieee.org/document/9334819
WOSCitedRecordID wos000680413800112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4qFe1LbiNzl4dNtksx_ZY1GLgpRCK_RWNsmkFnRbltbfb7JZqoIXb0vYEJh8vHm7eW8AblWYaxnHluRwkQRRjiqQJtOBVKmFe0woesv8l3Q8FvN5NmnA3V4Lg4jV5TPsu8fqX75eq537VDbIKtlo1oRmmqZeq7U_de1QrFboMJoNnofTyBVPswwwpP26468KKhWAjI7-N_Qx9L6VeGSyx5gTaGDRgcMfJoIdaLt80dstd2EyJNONL0NEZiVi4FBKE2cubV8gw_flulxt3z6IzVXJgzPNretdkbG_D04cHy3MarnzS6MHr6PH2f1TUBdNCFYh5dsgyWluEuNgXIs0T3XILSWQVMXMkhfldpyJMaJGMp7Y9MwyFCplJCTTobTYzk-hVawLPAOSo-HCpmCasSwKmRaKCbtfVaI5Ywmac-i6QC023hdjUcfo4u_mS2i7uXDnPqNX0NqWO7yGA_VpQ1TeVJP5Bbk1oAc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAFHzUKlgvaqv47R48uu1uvnMsammxhkIr9FayX7WgaQmtv9-3SagKXryFkLDwNpt5k-zMANxJJ1XC95HkuFFAvVRLKkysqJAhwr0OmC4t84dhkkTTaTyqwf1WC6O1Ljaf6bY9LP7lq6Xc2E9lnbiQjcY7sOt7nsNLtdb2vYuD8Uqjw1ncGXTHno1PQw7osHZ1668MlQJCeof_G_wITr61eGS0RZljqOmsCQc_bASb0LAdY2m43IJRl4xXZRARmeRaU4tTilh7abyAdN_ny3yxfvsg2K2SR2ubWyVekaTcEU4sI83MYr4pH44TeO09TR76tIpNoAuHuWsapCw1gbFArqIwDZXjIikQTPoc6Yu0a8742mNGcDfABg05ChPCiwRXjkB0d0-hni0zfQYk1caNsAlTnMdYcBVJHuGKlYFyOQ-0OYeWLdRsVTpjzKoaXfx9-hb2-5OX4Ww4SJ4voWHnxaIAZ1dQX-cbfQ178hPLld8UE_sFPOejTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+of+the+Industry+Applications+Conference&rft.atitle=A+Spanning+Tree-based+Genetic+Algorithm+for+Distribution+Network+Reconfiguration&rft.au=Gautam%2C+Mukesh&rft.au=Bhusal%2C+Narayan&rft.au=Benidris%2C+Mohammed&rft.au=Louis%2C+Sushil+J.&rft.date=2020-10-10&rft.pub=IEEE&rft.eissn=2576-702X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIAS44978.2020.9334819&rft.externalDocID=9334819