Special Session: Fault Criticality Assessment in AI Accelerators
The ubiquitous application of deep neural networks (DNN) has led to a rise in demand for AI accelerators. DNN-specific functional criticality analysis identifies faults that cause measurable and significant deviations from acceptable requirements such as the inferencing accuracy. This paper examines...
Uložené v:
| Vydané v: | Proceedings - IEEE VLSI Test Symposium s. 1 - 4 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
25.04.2022
|
| Predmet: | |
| ISSN: | 2375-1053 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The ubiquitous application of deep neural networks (DNN) has led to a rise in demand for AI accelerators. DNN-specific functional criticality analysis identifies faults that cause measurable and significant deviations from acceptable requirements such as the inferencing accuracy. This paper examines the problem of classifying structural faults in the processing elements (PEs) of systolic-array accelerators. We first present a two-tier machine-learning (ML) based method to assess the functional criticality of faults. The problem of minimizing misclassification is addressed by utilizing generative adversarial networks (GANs). The two-tier ML/GAN-based criticality assessment method leads to less than 1% test escapes during functional criticality evaluation of structural faults. While supervised learning techniques can be used to accurately estimate fault criticality, it requires a considerable amount of ground truth for model training. We therefore describe a neural-twin framework for analyzing fault criticality with a negligible amount of ground-truth data. A recently proposed misclassification-driven training algorithm is used to sensitize and identify biases that are critical to the functioning of the accelerator for a given application workload. The proposed framework achieves up to 100% accuracy in fault-criticality classification in 16-bit and 32-bit PEs by using the criticality knowledge of only 2% of the total faults in a PE. |
|---|---|
| AbstractList | The ubiquitous application of deep neural networks (DNN) has led to a rise in demand for AI accelerators. DNN-specific functional criticality analysis identifies faults that cause measurable and significant deviations from acceptable requirements such as the inferencing accuracy. This paper examines the problem of classifying structural faults in the processing elements (PEs) of systolic-array accelerators. We first present a two-tier machine-learning (ML) based method to assess the functional criticality of faults. The problem of minimizing misclassification is addressed by utilizing generative adversarial networks (GANs). The two-tier ML/GAN-based criticality assessment method leads to less than 1% test escapes during functional criticality evaluation of structural faults. While supervised learning techniques can be used to accurately estimate fault criticality, it requires a considerable amount of ground truth for model training. We therefore describe a neural-twin framework for analyzing fault criticality with a negligible amount of ground-truth data. A recently proposed misclassification-driven training algorithm is used to sensitize and identify biases that are critical to the functioning of the accelerator for a given application workload. The proposed framework achieves up to 100% accuracy in fault-criticality classification in 16-bit and 32-bit PEs by using the criticality knowledge of only 2% of the total faults in a PE. |
| Author | Talukdar, Jonti Chakrabarty, Krishnendu Chaudhuri, Arjun |
| Author_xml | – sequence: 1 givenname: Arjun surname: Chaudhuri fullname: Chaudhuri, Arjun organization: Duke University,Department of Electrical and Computer Engineering,Durham,NC – sequence: 2 givenname: Jonti surname: Talukdar fullname: Talukdar, Jonti organization: Duke University,Department of Electrical and Computer Engineering,Durham,NC – sequence: 3 givenname: Krishnendu surname: Chakrabarty fullname: Chakrabarty, Krishnendu organization: Duke University,Department of Electrical and Computer Engineering,Durham,NC |
| BookMark | eNotj81KAzEYAKMo2NY-gQh5gV2__CeeXBarhYKHrV5LmnyByHZbNuuhb69gT3MYGJg5uRmOAxLyyKBmDNzT17ZTXAHUHDirnXGSM3VFls5YprWSDDSwazLjwqiKgRJ3ZF7KNwAHJWFGXroThux72mEp-Tg805X_6SfajnnKwfd5OtOmlD95wGGieaDNmjYhYI-jn45juSe3yfcFlxcuyOfqddu-V5uPt3XbbKrMQUyVtnth9zGG4Kz1MVntjRTe-AgyBm2Sx8BM4jIljS5FHZNMIhqnWNQ6oFiQh_9uRsTdacwHP553l2HxC63zTTE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/VTS52500.2021.9794215 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665410601 1665410604 |
| EISSN | 2375-1053 |
| EndPage | 4 |
| ExternalDocumentID | 9794215 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-68b38bddcc988adf86a743a7ad04dc67faec17f24ff6e9fd6df4f3d7951d66ce3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850232500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:23:59 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-68b38bddcc988adf86a743a7ad04dc67faec17f24ff6e9fd6df4f3d7951d66ce3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9794215 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-April-25 |
| PublicationDateYYYYMMDD | 2022-04-25 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-April-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - IEEE VLSI Test Symposium |
| PublicationTitleAbbrev | VTS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020540 |
| Score | 2.2153964 |
| Snippet | The ubiquitous application of deep neural networks (DNN) has led to a rise in demand for AI accelerators. DNN-specific functional criticality analysis... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | AI accelerators Deep learning Fault diagnosis Neural networks Supervised learning Training Very large scale integration |
| Title | Special Session: Fault Criticality Assessment in AI Accelerators |
| URI | https://ieeexplore.ieee.org/document/9794215 |
| WOSCitedRecordID | wos000850232500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCLj1Z8k4NH02aTmIcni1j0Ugqt0ltJkwkUZFvarb_fZLuuCl68hYQQmATmm8x88yF0I2NMAspYAtIFIpzPiGVGEOm9lJ7GFetKsQk1GOjJxAwb6LbmwgBAWXwGnTQsc_l-4Tbpq6xr4uNhiVG-o5TccrXq4CpBj4qhk1HTfRuPUsKOxgiQZZ1q4y8FldKB9A_-d_Qhan8z8fCw9jFHqAH5Mdr_0USwhR4qCXk82rbYuMd9u3kv8JeIQYTZuFf338TzHPdecM-56G_KFPu6jV77T-PHZ1LpIpA5o7wgUs-4nnnvnNHa-qCljTjAKuup8E6qYMFlKjARggQTvPRBBO5VBFPxAhzwE9TMFzmcIixSWSbXYKUGAdqlrKjX1Mos44JTfYZayRbT5bb1xbQyw_nf0xdojyV2ABWE3V2iZrHawBXadR_FfL26Lu_rEyPDl3c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFdSLj1Z8m4NH02aTNJv1ZBFLi7UUWqW3kuYBBdlKu_X3m2zXVcGLt5AQApPAfJOZbz6AG-FjEhsnCluhHebaRFjRhGNhjBCG-BWlc7GJeDCQk0kyrMBtyYWx1ubFZ7YRhnku3yz0OnyVNRP_eGhglG-1OKdkw9Yqw6sAPgqOTkSS5ut4FFJ2xMeANGoUW39pqOQupLP_v8MPoP7NxUPD0sscQsWmR7D3o41gDe4LEXk02jTZuEMdtX7L0JeMgQfaqF124ETzFLV7qK219zh5kn1Vh5fO4_ihiwtlBDynhGVYyBmTM2O0TqRUxkmhPBJQsTKEGy1ip6yOYke5c8ImzgjjuGMm9nDKX4G27Biq6SK1J4B4KMxk0iohLbdSh7yokUSJKGKcEXkKtWCL6fum-cW0MMPZ39PXsNMdP_en_d7g6Rx2aeAKEI5p6wKq2XJtL2Fbf2Tz1fIqv7tPNaGavg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+VLSI+Test+Symposium&rft.atitle=Special+Session%3A+Fault+Criticality+Assessment+in+AI+Accelerators&rft.au=Chaudhuri%2C+Arjun&rft.au=Talukdar%2C+Jonti&rft.au=Chakrabarty%2C+Krishnendu&rft.date=2022-04-25&rft.pub=IEEE&rft.eissn=2375-1053&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FVTS52500.2021.9794215&rft.externalDocID=9794215 |