Learning Approach For Fast Approximate Matrix Factorizations
Efficiently computing an (approximate) orthonormal basis and low-rank approximation for the input data X plays a crucial role in data analysis. One of the most efficient algorithms for such tasks is the randomized algorithm, which proceeds by computing a projection XA with a random sketching matrix...
Saved in:
| Published in: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 5408 - 5412 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
23.05.2022
|
| Subjects: | |
| ISSN: | 2379-190X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!