Learning Approach For Fast Approximate Matrix Factorizations
Efficiently computing an (approximate) orthonormal basis and low-rank approximation for the input data X plays a crucial role in data analysis. One of the most efficient algorithms for such tasks is the randomized algorithm, which proceeds by computing a projection XA with a random sketching matrix...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 5408 - 5412 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
23.05.2022
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!