Learning Approach For Fast Approximate Matrix Factorizations

Efficiently computing an (approximate) orthonormal basis and low-rank approximation for the input data X plays a crucial role in data analysis. One of the most efficient algorithms for such tasks is the randomized algorithm, which proceeds by computing a projection XA with a random sketching matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) S. 5408 - 5412
Hauptverfasser: Yu, Haiyan, Qin, Zhen, Zhu, Zhihui
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.05.2022
Schlagworte:
ISSN:2379-190X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Efficiently computing an (approximate) orthonormal basis and low-rank approximation for the input data X plays a crucial role in data analysis. One of the most efficient algorithms for such tasks is the randomized algorithm, which proceeds by computing a projection XA with a random sketching matrix A of much smaller size, and then computing the orthonormal basis as well as low-rank factorizations of the tall matrix XA. While a random matrix A is the de facto choice, in this work, we improve upon its performance by utilizing a learning approach to find an adaptive sketching matrix A from a set of training data. We derive a closed-form formulation for the gradient of the training problem, enabling us to use efficient gradient-based algorithms. We also extend this approach for learning structured sketching matrix, such as the sparse sketching matrix that performs as selecting a few number of representative columns from the input data. Our experiments on both synthetical and real data show that both learned dense and sparse sketching matrices outperform the random ones in finding the approximate orthonormal basis and low-rank approximations.
AbstractList Efficiently computing an (approximate) orthonormal basis and low-rank approximation for the input data X plays a crucial role in data analysis. One of the most efficient algorithms for such tasks is the randomized algorithm, which proceeds by computing a projection XA with a random sketching matrix A of much smaller size, and then computing the orthonormal basis as well as low-rank factorizations of the tall matrix XA. While a random matrix A is the de facto choice, in this work, we improve upon its performance by utilizing a learning approach to find an adaptive sketching matrix A from a set of training data. We derive a closed-form formulation for the gradient of the training problem, enabling us to use efficient gradient-based algorithms. We also extend this approach for learning structured sketching matrix, such as the sparse sketching matrix that performs as selecting a few number of representative columns from the input data. Our experiments on both synthetical and real data show that both learned dense and sparse sketching matrices outperform the random ones in finding the approximate orthonormal basis and low-rank approximations.
Author Zhu, Zhihui
Yu, Haiyan
Qin, Zhen
Author_xml – sequence: 1
  givenname: Haiyan
  surname: Yu
  fullname: Yu, Haiyan
  email: haiyan.yu@du.edu
  organization: University of Denver,Electrical and Computer Engineering,Denver,CO,USA,80208
– sequence: 2
  givenname: Zhen
  surname: Qin
  fullname: Qin, Zhen
  email: zhen.qin@du.edu
  organization: University of Denver,Electrical and Computer Engineering,Denver,CO,USA,80208
– sequence: 3
  givenname: Zhihui
  surname: Zhu
  fullname: Zhu, Zhihui
  email: zhihui.zhu@du.edu
  organization: University of Denver,Electrical and Computer Engineering,Denver,CO,USA,80208
BookMark eNotj89KxDAYxKMouF19Ai99ga5f8uVPA16WxapQUVgFb0vSphrRpqQ5rD69gV0YZmAOw28KcjaG0RFSUlhRCvrmcbPebl84asZWDLJpxRWV4oQUVErBIUuekgVDpSuq4f2CFPP8BQC14vWC3LbOxNGPH-V6mmIw3WfZhFg2Zk6HZu9_THLlk0nR73PfpRD9n0k-jPMlOR_M9-yujrkkb83d6-ahap_vM1hbeQaYKqlsPwy1YFb1SlknGAPeQyYd8gdgmrpeUhRCMmOVQTQcneXIeiXR1h0uyfVh1zvndlPMSPF3d3yK_2fpSl4
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9747165
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 5412
ExternalDocumentID 9747165
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-67bdff852b7d77be52204d0974f1100291ed6135562ab7a33a43eb432d763b8c3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864187905140&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:06:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-67bdff852b7d77be52204d0974f1100291ed6135562ab7a33a43eb432d763b8c3
PageCount 5
ParticipantIDs ieee_primary_9747165
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.1900983
Snippet Efficiently computing an (approximate) orthonormal basis and low-rank approximation for the input data X plays a crucial role in data analysis. One of the most...
SourceID ieee
SourceType Publisher
StartPage 5408
SubjectTerms Acoustics
Approximation algorithms
Conferences
learning approach
Low-rank matrix approximation
Signal processing
Signal processing algorithms
sketching algorithm
Training
Training data
Title Learning Approach For Fast Approximate Matrix Factorizations
URI https://ieeexplore.ieee.org/document/9747165
WOSCitedRecordID wos000864187905140&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlrxzR48GrubR5MFL6W4KGgpVKW3snmM9NJKu5X-fJPttip48RLCQEiYQGYyM983ANcmUahioYngFAlHExNlGSOq_HGYBGlJX_z2JPt9NRqlgxrcbLEwzrmy-MzdhmmZy7czswyhsnbwfZOOqENdSrnGam1fXSW52lTqxGn7sdcdDgfe2tKAtvJDtfZXE5XShmT7_9v9AFrfYLxosDUzh1Bz0yPY-8Ej2IS7iiX1PepWFOFRNptHWb4o1pLVxDumLnoOfPwrLw-R-g0AswWv2f1L74FUbRHIhMasIB2pLaISVEsrpXbeg4q5jf3xMPC_0TRx1htp4T2bXMucsZwzpzmj1r8lWhl2DI3pbOpOIHIi6ViFAhkiR2pzP02loUIZmaNVp9AMehh_rJkvxpUKzv4Wn8NuUHXIrVN2AY1ivnSXsGM-i8liflVe1xdbfpYV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6sLbS99KGl7-6hx6bu5mGy0ItIF6UqgrZ4k82reNGia_HnN1lX20IvvYQwEBImkJnMzPcNwL2KhBUhk4hRbBG1KkRCE4JE_uNQkcU5ffFbh_d6YjSK-yV42GJhjDF58Zl59NM8l69naulDZTXv-0Z1tgO7jFIcrdFa23dXcCo2tTphXGs3G4NB39lb7PFWbihW_2qjkluR5Oh_-x9D9RuOF_S3huYESmZ6Coc_mAQr8FTwpL4HjYIkPEhm8yBJF9laspo419QEXc_Iv3JyH6vfQDCr8Jo8D5stVDRGQBMckgzVudTWCoYl15xL43yokOrQHc96BjgcR0Y7M82cb5NKnhKSUmIkJVi710QKRc6gPJ1NzTkEhkV1LSyzxFpqsU7dNOYKM6F4arW4gIrXw_hjzX0xLlRw-bf4DvZbw25n3Gn3Xq7gwKvdZ9oxuYZyNl-aG9hTn9lkMb_Nr-4LWtGZXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Learning+Approach+For+Fast+Approximate+Matrix+Factorizations&rft.au=Yu%2C+Haiyan&rft.au=Qin%2C+Zhen&rft.au=Zhu%2C+Zhihui&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=5408&rft.epage=5412&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747165&rft.externalDocID=9747165