Mimicking the immune system to diagnose Parkinson's disease from handwriting

We introduce a method adopting the Negative Selection Algorithm, which mimics the way the human immune system learns to discriminate body cells from external antigens, for the computer-aided diagnosis of Parkinson's disease from online handwriting. The major advantage of the proposed method wit...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Pattern Recognition pp. 2496 - 2502
Main Authors: Parziale, Antonio, Cioppa, Antonio Della, Marcelli, Angelo
Format: Conference Proceeding
Language:English
Published: IEEE 21.08.2022
Subjects:
ISSN:2831-7475
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a method adopting the Negative Selection Algorithm, which mimics the way the human immune system learns to discriminate body cells from external antigens, for the computer-aided diagnosis of Parkinson's disease from online handwriting. The major advantage of the proposed method with respect to the current state-of-the-art machine learning methods is that it is trained only on data from healthy subjects, thus avoiding the burden of collecting patients' data. Moreover, it has only two parameters to set, and its implementation is by far simpler than those of most of, if not all, the methods proposed in the literature. The performance of the proposed method is evaluated on the PaHaW dataset, which includes handwriting samples drawn by 75 subjects. The results show that it outperforms the state-of-the-art methods and uses fewer features.
AbstractList We introduce a method adopting the Negative Selection Algorithm, which mimics the way the human immune system learns to discriminate body cells from external antigens, for the computer-aided diagnosis of Parkinson's disease from online handwriting. The major advantage of the proposed method with respect to the current state-of-the-art machine learning methods is that it is trained only on data from healthy subjects, thus avoiding the burden of collecting patients' data. Moreover, it has only two parameters to set, and its implementation is by far simpler than those of most of, if not all, the methods proposed in the literature. The performance of the proposed method is evaluated on the PaHaW dataset, which includes handwriting samples drawn by 75 subjects. The results show that it outperforms the state-of-the-art methods and uses fewer features.
Author Cioppa, Antonio Della
Marcelli, Angelo
Parziale, Antonio
Author_xml – sequence: 1
  givenname: Antonio
  surname: Parziale
  fullname: Parziale, Antonio
  email: anparziale@unisa.it
  organization: University of Salerno,DIEM,Fisciano,SA,Italy,84084
– sequence: 2
  givenname: Antonio Della
  surname: Cioppa
  fullname: Cioppa, Antonio Della
  email: adellacioppa@unisa.it
  organization: University of Salerno,DIEM,Fisciano,SA,Italy,84084
– sequence: 3
  givenname: Angelo
  surname: Marcelli
  fullname: Marcelli, Angelo
  email: amarcelli@unisa.it
  organization: University of Salerno,DIEM,Fisciano,SA,Italy,84084
BookMark eNotj11LwzAYhaMouE1_gSC586o1n2-aSylOBxWH6PXI0rdb1KbSVGT_3oC7OvBweA5nTs7iEJGQG85Kzpm9W9XrVw0SeCmYEKW1GjSHEzLnAFpZBkKdkpmoJC-MMvqCzFP6YEwwqasZaZ5DH_xniDs67ZGGvv-JSNMhTdjTaaBtcLs4JKRrN-ZWGuJtyjChy6wbh57uXWx_xzBlxSU579xXwqtjLsj78uGtfiqal8dVfd8UIa9OBYDfouAopGDGem5923nOQQPbaiWU9cJABcyizL-MbQVqQGidNQqgs3JBrv-9ARE332Po3XjYHJ_LP3_4T4c
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR56361.2022.9956516
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1665490624
9781665490627
EISSN 2831-7475
EndPage 2502
ExternalDocumentID 9956516
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-66cbe21e232079c19cdfc116560b54249c2768609e363679d2e56e6da97466f93
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897707602069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:18:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-66cbe21e232079c19cdfc116560b54249c2768609e363679d2e56e6da97466f93
PageCount 7
ParticipantIDs ieee_primary_9956516
PublicationCentury 2000
PublicationDate 2022-Aug.-21
PublicationDateYYYYMMDD 2022-08-21
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.-21
  day: 21
PublicationDecade 2020
PublicationTitle International Conference on Pattern Recognition
PublicationTitleAbbrev ICPR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020358
Score 2.206372
Snippet We introduce a method adopting the Negative Selection Algorithm, which mimics the way the human immune system learns to discriminate body cells from external...
SourceID ieee
SourceType Publisher
StartPage 2496
SubjectTerms Behavioral sciences
Detectors
Feature extraction
Parkinson's disease
Sociology
Support vector machines
Training
Title Mimicking the immune system to diagnose Parkinson's disease from handwriting
URI https://ieeexplore.ieee.org/document/9956516
WOSCitedRecordID wos000897707602069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4NeptvE3-QgeLFb07Rpch4OBR1DFHYbbfIqPdjJ1um_b15bp4IXbyW0DbwQ8r4v7_sewKWKZKIiHXois8oLUWsvtcKnmgaeccGF0VnVbCKeTtV8rmctuN5qYRCxKj7DIT1Wd_l2aTZElY1IhRlx2YZ2HMtaq7UFV76IVKMA5r4e3Y1nj5EUkiBgEAybL3-1UKlOkEn3f3Pvw-Bbisdm20PmAFpY9KD71YuBNVuzB3s_jAX7cP-Qv-aGWHDmEjyWkwgEWe3azMols3WBnft1Qly5y7mv1qy5q2GkOGFEqH-Q4VHxMoDnyc3T-NZr-iZ4uQtD6UlpUgw4umTJj7Xh2tjM1DY7aRQ6vGUCBzKkr1G4CMXaBhhJlDZx2ELKTItD6BTLAo-Aodv_VioMLVUgpu5dYaMkSZQyDmhodQx9CtXirbbGWDRROvl7-BR2aTWIkg34GXTK1QbPYce8l_l6dVGt5ydN96Cs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNFEvKGD8bQ8mXhys61raM5FABEIMJtzIaN_MDg4DQ_99222iJl68LcvWJa9Z-77X930fwK3kIpJchR6LjfRCVMpbGOa7ngYaU0aZVnFuNtEZj-VspiYVuN9yYRAxbz7DlrvMz_LNUm9cqaztWJicih3Ydc5ZJVtrC698xmXJAaa-ag-6kycumHAgMAha5bu_TFTyPaRX-9_Xj6D5TcYjk-02cwwVTOtQ-3JjIOXPWYfDH9KCDRiOktdEuzo4sSkeSRwNBEmh20yyJTFFi50dOnLVcpt1361JeVpDHOeEuJL6h5M8Sl-a8Nx7mHb7Xumc4CU2DJknhF5gQNGmS35Haaq0iXUhtLPgoUVcOrAwQ_gKmY1QR5kAuUBhIosuhIgVO4FqukzxFAjaFcAIiaFxPYgL-ywzPIoiKbWFGkqeQcOFav5WiGPMyyid_337Bvb709FwPhyMHy_gwM2MK9AG9BKq2WqDV7Cn37NkvbrO5_YT3Aqj9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Pattern+Recognition&rft.atitle=Mimicking+the+immune+system+to+diagnose+Parkinson%27s+disease+from+handwriting&rft.au=Parziale%2C+Antonio&rft.au=Cioppa%2C+Antonio+Della&rft.au=Marcelli%2C+Angelo&rft.date=2022-08-21&rft.pub=IEEE&rft.eissn=2831-7475&rft.spage=2496&rft.epage=2502&rft_id=info:doi/10.1109%2FICPR56361.2022.9956516&rft.externalDocID=9956516