Integrating Covariance Intersection Into Bayesian Multitarget Tracking Filters
Multitarget tracking systems typically provide sets of estimated target states as their output. It is challenging to be able to integrate these outputs as inputs to other tracking systems to gain a better picture of the area under surveillance since they do not conform to the standard observation mo...
Uloženo v:
| Vydáno v: | IEEE transactions on aerospace and electronic systems Ročník 59; číslo 2; s. 1382 - 1391 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9251, 1557-9603 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multitarget tracking systems typically provide sets of estimated target states as their output. It is challenging to be able to integrate these outputs as inputs to other tracking systems to gain a better picture of the area under surveillance since they do not conform to the standard observation model. Moreover, in cyclic distributed systems, there may be common information between state estimates that would mean that fused estimates may become overconfident and corrupt the system. In this article, we develop a Bayesian multitarget estimator based on the covariance intersection algorithm for multitarget track-to-track data fusion. The approach is integrated into a multitarget tracking algorithm and demonstrated in simulations. The approach is able to account for missed tracks and false tracks produced by another tracking system. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9251 1557-9603 |
| DOI: | 10.1109/TAES.2022.3201509 |