APPFL: Open-Source Software Framework for Privacy-Preserving Federated Learning
Federated learning (FL) enables training models at different sites and updating the weights from the training instead of transferring data to a central location and training as in clas-sical machine learning. The FL capability is especially important to domains such as biomedicine and smart grid, wh...
Gespeichert in:
| Veröffentlicht in: | 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) S. 1074 - 1083 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2022
|
| Schlagworte: | |
| ISBN: | 9781665497480 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Federated learning (FL) enables training models at different sites and updating the weights from the training instead of transferring data to a central location and training as in clas-sical machine learning. The FL capability is especially important to domains such as biomedicine and smart grid, where data may not be shared freely or stored at a central location because of policy regulations. Thanks to the capability of learning from decentralized datasets, FL is now a rapidly growing research field, and numerous FL frameworks have been developed. In this work we introduce APPFL, the Argonne Privacy-Preserving Federated Learning framework. APPFL allows users to leverage implemented privacy-preserving algorithms, implement new al-gorithms, and simulate and deploy various FL algorithms with privacy-preserving techniques. The modular framework enables users to customize the components for algorithms, privacy, communication protocols, neural network models, and user data. We also present a new communication-efficient algorithm based on an inexact alternating direction method of multipliers. The algorithm requires significantly less communication between the server and the clients than does the current state of the art. We demonstrate the computational capabilities of APPFL, including differentially private FL on various test datasets and its scalability, by using multiple algorithms and datasets on different computing environments. |
|---|---|
| AbstractList | Federated learning (FL) enables training models at different sites and updating the weights from the training instead of transferring data to a central location and training as in clas-sical machine learning. The FL capability is especially important to domains such as biomedicine and smart grid, where data may not be shared freely or stored at a central location because of policy regulations. Thanks to the capability of learning from decentralized datasets, FL is now a rapidly growing research field, and numerous FL frameworks have been developed. In this work we introduce APPFL, the Argonne Privacy-Preserving Federated Learning framework. APPFL allows users to leverage implemented privacy-preserving algorithms, implement new al-gorithms, and simulate and deploy various FL algorithms with privacy-preserving techniques. The modular framework enables users to customize the components for algorithms, privacy, communication protocols, neural network models, and user data. We also present a new communication-efficient algorithm based on an inexact alternating direction method of multipliers. The algorithm requires significantly less communication between the server and the clients than does the current state of the art. We demonstrate the computational capabilities of APPFL, including differentially private FL on various test datasets and its scalability, by using multiple algorithms and datasets on different computing environments. |
| Author | Kim, Kibaek Kim, Youngdae Madduri, Ravi K. Ryu, Minseok |
| Author_xml | – sequence: 1 givenname: Minseok surname: Ryu fullname: Ryu, Minseok email: mryu@anl.gov organization: Argonne National Laboratory,Mathematics and Computer Science Division,Lemont,IL,USA – sequence: 2 givenname: Youngdae surname: Kim fullname: Kim, Youngdae email: youngdae@anl.gov organization: Argonne National Laboratory,Mathematics and Computer Science Division,Lemont,IL,USA – sequence: 3 givenname: Kibaek surname: Kim fullname: Kim, Kibaek email: kimk@anl.gov organization: Argonne National Laboratory,Mathematics and Computer Science Division,Lemont,IL,USA – sequence: 4 givenname: Ravi K. surname: Madduri fullname: Madduri, Ravi K. email: madduri@anl.gov organization: Argonne National Laboratory,Data Science and Learning Division,Lemont,IL,USA |
| BookMark | eNo1j81Kw0AYRUdU0NY-gSDzAqnf_M-4K9VoIdBAFZdl2txI1CZlUit9ewvq6nDP4sIZsLO2a8HYjaCxEBRuZ-V9uXg1xmk3liTlmEg4c8IGwlqjw1GbUzYKzv9vTxds1PfvRCSDEj7ISzaflGVe3PH5Fm226L7SGnzR1bvvmMDzFDf47tIHr7vEy9Ts4_qQlQk90r5p33iOCinuUPECMbVHdcXO6_jZY_THIXvJH56nT1kxf5xNJ0XWSFK7zGqiCj4YA6zseuXrCEgd7DEMtfXRQMqoqNKiUtFZkrq2wsARVvAU1JBd__42AJbb1GxiOiyDV0aTUz8Uy1Jj |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPSW55747.2022.00175 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665497475 9781665497473 |
| EndPage | 1083 |
| ExternalDocumentID | 9835407 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i203t-6400de8955eeb6cb8faee2496109ef68a5e22a30d41d3a76024f615e70ebe8093 |
| IEDL.DBID | RIE |
| ISBN | 9781665497480 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855041000127&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:24:24 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-6400de8955eeb6cb8faee2496109ef68a5e22a30d41d3a76024f615e70ebe8093 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9835407 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) |
| PublicationTitleAbbrev | IPDPSW |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002931892 |
| Score | 2.0366902 |
| Snippet | Federated learning (FL) enables training models at different sites and updating the weights from the training instead of transferring data to a central... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1074 |
| SubjectTerms | Collaborative work communication-efficient algorithm Data models data privacy federated learning open-source software Protocols Regulation Scalability Software algorithms Training |
| Title | APPFL: Open-Source Software Framework for Privacy-Preserving Federated Learning |
| URI | https://ieeexplore.ieee.org/document/9835407 |
| WOSCitedRecordID | wos000855041000127&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6bePCksom_ycGjcWnTNIk3UYvCmIUp7jbS5HXs0sncJv73vnR1evDirRQK5YW87-Xl-75HyIWLLSJPwRlAbFgilWOF0gmLrAx-WcGupBYK99VgoEcjk7fI5UYLAwA1-QyuwmN9l-9nbhlaZT1TdylUm7SVStdarU0_BWEr0iZuXJzCTF2slDVvRMERN73H_C4fvkqJBTSeC-Ng1BkFeuGvqSo1qGS7__udPdL9UefRfIM7-6QFVYc83eR51r-mgSDChnVHng4xxX7YOdDsm4FFsUTFb6cr6z5ZYF-ETFFNaBYsJbDq9LTxW510yUt2_3z7wJphCWwac7FgKW5GD9pICVCkrtClxfAnJtipQ5lqKyGOreA-ibywKkVsLrGaAcVxGTU34oBsVbMKDgkFK33ptRCJc4nE85iJXIGZoPRCBHOdI9IJwRi_rf0wxk0cjv9-fUJ2QrTXJMFTsrWYL-GMbLvVYvo-P68X8QuJXJpI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0gmuhJDRi_3YNHV9put931ZtQGYsUmYORGtrtTwgUMAsZ_706p6MGLt6ZJk2YmnTc7fe8NIZcm0A55co8BBIqFIjYsj2XIfC3QLwvtSkqhcBp3u3IwUFmNXK21MABQks_gGi_Lf_l2ahY4KmupckoRb5BN3JxVqbXWExUHXL5UQeXjhFt1Xa8svUoW7Huq1cnus96rEK6FdifDAK06fSQY_tqrUsJKsvu_F9ojzR99Hs3WyLNPajBpkOfbLEvSG4oUEdYrZ_K054rsh54BTb45WNQ1qe7Z8VKbT4b8C6wVkxFN0FTC9Z2WVo6royZ5SR76d21WrUtg48Djcxa5z9GCVEIA5JHJZaFdAkKFhupQRFILCALNPRv6lus4cuhcuH4GYs8lUnqKH5D6ZDqBQ0JBC1tYyXloTCjciUz5Jne1oLCco73OEWlgMIZvK0eMYRWH479vX5Dtdv8pHaad7uMJ2cHIryiDp6Q-ny3gjGyZ5Xz8PjsvE_oFxoSdkQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops+%28IPDPSW%29&rft.atitle=APPFL%3A+Open-Source+Software+Framework+for+Privacy-Preserving+Federated+Learning&rft.au=Ryu%2C+Minseok&rft.au=Kim%2C+Youngdae&rft.au=Kim%2C+Kibaek&rft.au=Madduri%2C+Ravi+K.&rft.date=2022-05-01&rft.pub=IEEE&rft.isbn=9781665497480&rft.spage=1074&rft.epage=1083&rft_id=info:doi/10.1109%2FIPDPSW55747.2022.00175&rft.externalDocID=9835407 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781665497480/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781665497480/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781665497480/sc.gif&client=summon&freeimage=true |

