Computation Rate Maximization for Multiuser Mobile Edge Computing Systems With Dynamic Energy Arrivals
This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation of-floading and local computing. Towards maximizing the system weighted comp...
Uloženo v:
| Vydáno v: | 2021 IEEE/CIC International Conference on Communications in China (ICCC) s. 312 - 317 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
28.07.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation of-floading and local computing. Towards maximizing the system weighted computation rate (i.e., the number of weighted users' computing bits within a finite time horizon) subject to the users' energy causality constraints due to dynamic energy arrivals, the decision for joint computation offloading and local computing over time is optimized over time. Assuming that the profile of channel state information and dynamic task arrivals at the users is known in advance, the weighted computation rate maximization problem becomes a convex optimization problem. Building on the Lagrange duality method, the well-structured optimal solution is analytically obtained. Both the users' local computing and offloading rates are shown to have a monotonically increasing structure. Numerical results show that the proposed design scheme can achieve a significant performance gain over the alternative benchmark schemes. |
|---|---|
| AbstractList | This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation of-floading and local computing. Towards maximizing the system weighted computation rate (i.e., the number of weighted users' computing bits within a finite time horizon) subject to the users' energy causality constraints due to dynamic energy arrivals, the decision for joint computation offloading and local computing over time is optimized over time. Assuming that the profile of channel state information and dynamic task arrivals at the users is known in advance, the weighted computation rate maximization problem becomes a convex optimization problem. Building on the Lagrange duality method, the well-structured optimal solution is analytically obtained. Both the users' local computing and offloading rates are shown to have a monotonically increasing structure. Numerical results show that the proposed design scheme can achieve a significant performance gain over the alternative benchmark schemes. |
| Author | Lin, Zhifei Liu, Licheng Wang, Feng |
| Author_xml | – sequence: 1 givenname: Zhifei surname: Lin fullname: Lin, Zhifei email: linfei0922@outlook.com organization: School of Information Engineering, Guangdong University of Technology,Guangzhou,China,510006 – sequence: 2 givenname: Feng surname: Wang fullname: Wang, Feng email: fengwang13@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology,Guangzhou,China,510006 – sequence: 3 givenname: Licheng surname: Liu fullname: Liu, Licheng email: celcliu@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology,Guangzhou,China,510006 |
| BookMark | eNotj91KwzAcxSPohZs-gSB5gdZ8NunliFUHG4IOvBxp-28NtOlIU7E-vYPu6nc4cA7nrNC1Hzwg9EhJSinJn7bGGMmUUikjjKa51IRzcYVWNMukEFxLeYsaM_SnKdroBo8_bAS8t7-ud3-L0wwB76cuummEsxpK1wEu6hbwknO-xZ_zGKEf8ZeL3_h59rZ3FS48hHbGmxDcj-3GO3TTnAH3F67R4aU4mLdk9_66NZtd4hjhMcm4aoAyYKAotRpqUQlynsu1lUpTsBkwoara2pIx1iipdVmyjFda5azUfI0elloHAMdTcL0N8_HynP8DqUhUqg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCC52777.2021.9580334 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665443855 9781665443852 |
| EndPage | 317 |
| ExternalDocumentID | 9580334 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-637fe12e2e711a8ed4c4016638a5781ea6e247cdaab222f7588bb263c8792b83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001353334200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:11 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-637fe12e2e711a8ed4c4016638a5781ea6e247cdaab222f7588bb263c8792b83 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9580334 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-July-28 |
| PublicationDateYYYYMMDD | 2021-07-28 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-July-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE/CIC International Conference on Communications in China (ICCC) |
| PublicationTitleAbbrev | ICCC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7794538 |
| Snippet | This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 312 |
| SubjectTerms | Benchmark testing computation offloading Convex functions convex optimization Energy harvesting energy harvesting (EH) Mobile edge computing (MEC) Performance gain Renewable energy sources Resource management Task analysis |
| Title | Computation Rate Maximization for Multiuser Mobile Edge Computing Systems With Dynamic Energy Arrivals |
| URI | https://ieeexplore.ieee.org/document/9580334 |
| WOSCitedRecordID | wos001353334200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioEJUIv4lgdG0sZ2EjsjCq1gaFWhSnSrbOcMGWhRmiJ-PhcnKkJiYYoVxYl0_nh357x7hNzm3DpmTBjgFYLIOdwHEUcCCWA1ImoaG-fFJuRsppbLdN4hd3suDAD4n89gWDf9WX6-sbs6VTZKYxUKEXVJV8qk4Wq1pF8WpqOnLMtiLqXEqI-zYfvwL9UUDxqTo_997pgMfth3dL7HlRPSgXWfuEZ-wduRPqODSKf6q3hvWZQUXU_qubR10oFONwYXOx3nr0Cbfvgi2hYnpy9F9UYfGiV6OvbcP3pflgXOue2ALCbjRfYYtBoJQcFDUQWJkA4YBw6SMa0gjyxGTOhGKI1rkYFOgEfS5lob9AQcRgfKGJ4Iq2TKjRKnpLferOGM0NTGEXOS1RXIImCJEbnTMmUuD4V1yp6Tfm2i1UdTBWPVWufi79uX5LAehToLytUV6VXlDq7Jgf2sim1544fuG5v2niQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zCnpS2cRvc_BoZ_PRJj3K3NhwG0MG7jaS9EV7cJOuE_9807RMBC-eGkrTwsvH772X_t4PoduUGku0DgN3hYBb6_ZBhyOBADDKIWoSaevFJsRkIufzZNpAd1suDAD4n8-gUzb9WX66MpsyVXafRDJkjO-g3YhzGlZsrZr2S8LkftjtdiMqhHBxHyWd-vFfuikeNvqH__vgEWr_8O_wdIssx6gByxaylQCDtyR-di4iHquv7L3mUWLnfGLPpi3TDni80m654176Crjq516E6_Lk-CUr3vBjpUWPe579hx_yPHOzbt1Gs35v1h0EtUpCkNGQFUHMhAVCgYIgRElIuXExk3MkpHKrkYCKgXJhUqW08wWsiw-k1jRmRoqEaslOUHO5WsIpwomJOLGClDXIOJBYs9QqkRCbhsxYac5QqzTR4qOqg7GorXP-9-0btD-YjUeL0XDydIEOyhEpc6JUXqJmkW_gCu2ZzyJb59d-GL8BAnKhaw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FCIC+International+Conference+on+Communications+in+China+%28ICCC%29&rft.atitle=Computation+Rate+Maximization+for+Multiuser+Mobile+Edge+Computing+Systems+With+Dynamic+Energy+Arrivals&rft.au=Lin%2C+Zhifei&rft.au=Wang%2C+Feng&rft.au=Liu%2C+Licheng&rft.date=2021-07-28&rft.pub=IEEE&rft.spage=312&rft.epage=317&rft_id=info:doi/10.1109%2FICCC52777.2021.9580334&rft.externalDocID=9580334 |