A Biochemical Fault Detection Method Based on Stack Noise Reduction Sparse Automatic Encoder

A method based on stack noise reduction sparse automatic coder is proposed for biochemical process fault detection. Based on SDSA, softmax classifier is introduced to build a deep neural network model, and particle swarm optimization algorithm is used to optimize the parameters of the model to impro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chinese Control and Decision Conference s. 5344 - 5349
Hlavní autori: Wang, Ping, Chu, Zhigang, Sun, Lupeng
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.08.2020
Predmet:
ISSN:1948-9447
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A method based on stack noise reduction sparse automatic coder is proposed for biochemical process fault detection. Based on SDSA, softmax classifier is introduced to build a deep neural network model, and particle swarm optimization algorithm is used to optimize the parameters of the model to improve the sensitivity of the model in fault detection. The effectiveness of the proposed method is verified by the simulation of Eastman process in Tennessee.
ISSN:1948-9447
DOI:10.1109/CCDC49329.2020.9164763