A Biochemical Fault Detection Method Based on Stack Noise Reduction Sparse Automatic Encoder

A method based on stack noise reduction sparse automatic coder is proposed for biochemical process fault detection. Based on SDSA, softmax classifier is introduced to build a deep neural network model, and particle swarm optimization algorithm is used to optimize the parameters of the model to impro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Control and Decision Conference S. 5344 - 5349
Hauptverfasser: Wang, Ping, Chu, Zhigang, Sun, Lupeng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2020
Schlagworte:
ISSN:1948-9447
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method based on stack noise reduction sparse automatic coder is proposed for biochemical process fault detection. Based on SDSA, softmax classifier is introduced to build a deep neural network model, and particle swarm optimization algorithm is used to optimize the parameters of the model to improve the sensitivity of the model in fault detection. The effectiveness of the proposed method is verified by the simulation of Eastman process in Tennessee.
ISSN:1948-9447
DOI:10.1109/CCDC49329.2020.9164763