Iris: Amortized, Resource Efficient Visualizations of Voluminous Spatiotemporal Datasets

The growth in observational data volumes over the past decade has occurred alongside a need to make sense of the phenomena that underpin them. Visualization is a key component of the data wrangling process that precedes the analyses that informs these insights. The crux of this study is interactive...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2020 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT) s. 47 - 56
Hlavní autori: Bruhwiler, Kevin, Buddhika, Thilina, Pallickara, Shrideep, Pallickara, Sangmi Lee
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2020
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The growth in observational data volumes over the past decade has occurred alongside a need to make sense of the phenomena that underpin them. Visualization is a key component of the data wrangling process that precedes the analyses that informs these insights. The crux of this study is interactive visualizations of spatiotemporal phenomena from voluminous datasets. Spatiotemporal visualizations of voluminous datasets introduce challenges relating to interactivity, overlaying multiple datasets and dynamic feature selection, resource capacity constraints, and scaling. In this study we describe our methodology to address these challenges. We rely on a novel mix of algorithms and systems innovations working in concert to ensure effective apportioning and amortization of workloads and enable interactivity during visualizations. In particular our research prototype, Iris, leverages sketching algorithms, effective query predicate generation and evaluation, avoids performance hotspots, harnesses coprocessors for hardware acceleration, and convolutional neural network based encoders to render visualizations while preserving responsiveness and interactivity. We also report on several empirical benchmarks that demonstrate the suitability of our methodology to preserve interactivity while utilizing resources effectively to scale.
AbstractList The growth in observational data volumes over the past decade has occurred alongside a need to make sense of the phenomena that underpin them. Visualization is a key component of the data wrangling process that precedes the analyses that informs these insights. The crux of this study is interactive visualizations of spatiotemporal phenomena from voluminous datasets. Spatiotemporal visualizations of voluminous datasets introduce challenges relating to interactivity, overlaying multiple datasets and dynamic feature selection, resource capacity constraints, and scaling. In this study we describe our methodology to address these challenges. We rely on a novel mix of algorithms and systems innovations working in concert to ensure effective apportioning and amortization of workloads and enable interactivity during visualizations. In particular our research prototype, Iris, leverages sketching algorithms, effective query predicate generation and evaluation, avoids performance hotspots, harnesses coprocessors for hardware acceleration, and convolutional neural network based encoders to render visualizations while preserving responsiveness and interactivity. We also report on several empirical benchmarks that demonstrate the suitability of our methodology to preserve interactivity while utilizing resources effectively to scale.
Author Bruhwiler, Kevin
Buddhika, Thilina
Pallickara, Sangmi Lee
Pallickara, Shrideep
Author_xml – sequence: 1
  givenname: Kevin
  surname: Bruhwiler
  fullname: Bruhwiler, Kevin
  email: Kevin.Bruhwiler@rams.colostate.edu
  organization: Colorado State University,Department of Computer Science,Fort Collins,Colorado, 80521
– sequence: 2
  givenname: Thilina
  surname: Buddhika
  fullname: Buddhika, Thilina
  email: thilinab@cs.colostate.edu
  organization: Colorado State University,Department of Computer Science,Fort Collins,Colorado, 80521
– sequence: 3
  givenname: Shrideep
  surname: Pallickara
  fullname: Pallickara, Shrideep
  email: Shrideep.Pallickara@colostate.edu
  organization: Colorado State University,Department of Computer Science,Fort Collins,Colorado, 80521
– sequence: 4
  givenname: Sangmi Lee
  surname: Pallickara
  fullname: Pallickara, Sangmi Lee
  email: Sangmi.Pallickara@colostate.edu
  organization: Colorado State University,Department of Computer Science,Fort Collins,Colorado, 80521
BookMark eNotjNFKwzAUQCPog859gQj5AFtvc5s28a12UwcDQefwbaTdDQTapjTpg_t6FT0vB87DuWLngx-IsdsM0iwDff-4qqudBCVUKkBACj_gGVvqUkGJKhOoi_KSfW4mFx541fspuhMd7_gbBT9PLfG1ta51NES-d2E2nTuZ6PwQuLd877u5d4OfA38ff3OkfvST6fjKRBMohmt2YU0XaPnvBft4Wu_ql2T7-rypq23iBGBMpJVFluc2o7IETaS1QVU0BSAdLYHJEVvRytLmRaMa3VhA3WrbCiUNaKlwwW7-vo6IDuPkejN9HTSCkKjxG2rkUOA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BDCAT50828.2020.00003
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9780738123967
073812396X
EndPage 56
ExternalDocumentID 9302539
Genre orig-research
GrantInformation_xml – fundername: Advanced Research Projects Agency
  funderid: 10.13039/100009224
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-5f56144f1e7709ee99a386b603edfe0a433c2c57f46b8b9bf039c9fc285a09583
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000708007100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:39:10 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5f56144f1e7709ee99a386b603edfe0a433c2c57f46b8b9bf039c9fc285a09583
PageCount 10
ParticipantIDs ieee_primary_9302539
PublicationCentury 2000
PublicationDate 2020-Dec.
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.
PublicationDecade 2020
PublicationTitle 2020 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT)
PublicationTitleAbbrev BDCAT
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7559373
Snippet The growth in observational data volumes over the past decade has occurred alongside a need to make sense of the phenomena that underpin them. Visualization is...
SourceID ieee
SourceType Publisher
StartPage 47
SubjectTerms amortized
coprocessors
data analysis
data visualisation
Data visualization
data wrangling process
dynamic feature selection
effective apportioning
effective query predicate generation
interactive visualizations
Iris
learning (artificial intelligence)
multiple datasets
neural nets
Neural Networks
observational data volumes
query processing
rendering (computer graphics)
resource capacity constraints
resource efficient visualizations
Servers
Sketching Algorithms
Spatiotemporal Data
spatiotemporal phenomena
spatiotemporal visualizations
Visualization
voluminous datasets
voluminous spatiotemporal datasets
Title Iris: Amortized, Resource Efficient Visualizations of Voluminous Spatiotemporal Datasets
URI https://ieeexplore.ieee.org/document/9302539
WOSCitedRecordID wos000708007100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW_ycFj1yab3WTjrfYDD1IK1tJbySYTWNBWulsP_nqTdK0IXryFHBKYwLyZybw3CN0qS5XNLI2McrlJQrWJpIPhSLlYgtss1toGEdcnMZlki4WcNlB3z4UBgNB8Bnd-Gf7yzVpvfamsJ5lDaCabqCmE2HG1alIOJbL3MBz0Z6mXZHNpX0yCMiH7NTQlYMb46H-3HaPOD_kOT_ewcoIasGqjhZ8Ef4_7by5aLj7BdPF33R2PggiEOwrPi9JTJGtiJV5bPPe-p_AqrPg5tE7XSlSveKgqh19V2UEv49Fs8BjVQxGiIiasilLrtTsTS0EIIgGkVCzjOScMjAWiEsZ0rFNhE55nucwtYVJLq-MsVS6cytgpaq3WKzhDmLtgkYPzvDlQ_z2aU2EYNQIEt84RmnPU9lZZvu90L5a1QS7-3r5Eh97su1aPK9SqNlu4Rgf6oyrKzU14rC-Eu5ka
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmuhJDRi_7cEjK9vtftUbggQjEhKRcCPddppsomBg8eCvty0rxsSLt6aHNpkm82am894AXAtNhU419ZQwuUlIpfK4gWFPmFgi1mkgpXYirv1kMEgnEz6sQGPDhUFE13yGN3bp_vLVXK5sqazJmUFoxrdgOwrDgK7ZWiUth_q8eddpt0aRFWUziV_gO21C9mtsikON7v7_7juA-g_9jgw3wHIIFZzVYGJnwd-S1puJl_NPVA3yXXkn904GwhxFxvnSkiRLaiWZazK23ie3Oqzk2TVPl1pUr6QjCoNgxbIOL937UbvnlWMRvDzwWeFF2qp3hppikvgckXPB0jiLfYZKoy9CxmQgo0SHcZZmPNM-45JrGaSRMAFVyo6gOpvP8BhIbMLFGI3vzZDaD9KMJopRlWASa-MK1QnUrFWm72vli2lpkNO_t69gtzd66k_7D4PHM9izT7Bu_DiHarFY4QXsyI8iXy4u3cN9AalinGE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE%2FACM+International+Conference+on+Big+Data+Computing%2C+Applications+and+Technologies+%28BDCAT%29&rft.atitle=Iris%3A+Amortized%2C+Resource+Efficient+Visualizations+of+Voluminous+Spatiotemporal+Datasets&rft.au=Bruhwiler%2C+Kevin&rft.au=Buddhika%2C+Thilina&rft.au=Pallickara%2C+Shrideep&rft.au=Pallickara%2C+Sangmi+Lee&rft.date=2020-12-01&rft.pub=IEEE&rft.spage=47&rft.epage=56&rft_id=info:doi/10.1109%2FBDCAT50828.2020.00003&rft.externalDocID=9302539