Primal-dual algorithm for distributed optimization with local domains on signed networks

We consider the distributed optimization problem on signed networks. Each agent has a local function which depends on a subset of the components of the variable and is subject to a local constraint set. A primal-dual algorithm with fixed step size is proposed. The algorithm ensures that the agents&#...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control Conference s. 4930 - 4935
Hlavní autoři: Ren, Xiaoxing, Li, Dewei, Xi, Yugeng, Pan, Lulu, Shao, Haibin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Technical Committee on Control Theory, Chinese Association of Automation 01.07.2020
Témata:
ISSN:1934-1768
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the distributed optimization problem on signed networks. Each agent has a local function which depends on a subset of the components of the variable and is subject to a local constraint set. A primal-dual algorithm with fixed step size is proposed. The algorithm ensures that the agents' estimates converge to a subset of the components of an optimal solution or its opposite. Note that each component of the variable is allowed to be associated with more than one agents, our algorithm guarantees that those coupled agents achieve bipartite consensus on estimates for the intersection components. Numerical results are provided to demonstrate the theoretical analysis.
ISSN:1934-1768
DOI:10.23919/CCC50068.2020.9189564