Adaptive Neural Network-based Visual Servoing with Integral Sliding Mode Control for Manipulator

It is difficult to estimate the relationship between the motion of joint and the motion of image features, making the Calibration-free visual servoing control challenging. In traditional methods, the hand-eye relationship is usually approximated in purely online or offline ways. A practical scheme f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Control Conference S. 3567 - 3572
Hauptverfasser: Zeng, Haibin, Lu, Zhihui, Lv, Yueyong, Qi, Jiaming
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: Technical Committee on Control Theory, Chinese Association of Automation 25.07.2022
Schlagworte:
ISSN:1934-1768
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract It is difficult to estimate the relationship between the motion of joint and the motion of image features, making the Calibration-free visual servoing control challenging. In traditional methods, the hand-eye relationship is usually approximated in purely online or offline ways. A practical scheme for robot arm manipulation with both online and offline learning is proposed in this paper. The hand-eye relationship is formulated in a local linear format with Jacobian matrix, which is approximated by radial-basis function network (RBFN). Primitively, the RBFN is trained offline to form a relatively appropriate estimation of the Jacobian matrix, which is the beginning of the online step. Then, an online modification of the RBFN is executed, compensating the error caused by changes of camera's position and pose or insufficient training. The simulation experiments show that the proposed scheme can provide a reliable offline trained model and can adapt well to the changes of camera's position and pose due to the online update law.
AbstractList It is difficult to estimate the relationship between the motion of joint and the motion of image features, making the Calibration-free visual servoing control challenging. In traditional methods, the hand-eye relationship is usually approximated in purely online or offline ways. A practical scheme for robot arm manipulation with both online and offline learning is proposed in this paper. The hand-eye relationship is formulated in a local linear format with Jacobian matrix, which is approximated by radial-basis function network (RBFN). Primitively, the RBFN is trained offline to form a relatively appropriate estimation of the Jacobian matrix, which is the beginning of the online step. Then, an online modification of the RBFN is executed, compensating the error caused by changes of camera's position and pose or insufficient training. The simulation experiments show that the proposed scheme can provide a reliable offline trained model and can adapt well to the changes of camera's position and pose due to the online update law.
Author Lu, Zhihui
Zeng, Haibin
Qi, Jiaming
Lv, Yueyong
Author_xml – sequence: 1
  givenname: Haibin
  surname: Zeng
  fullname: Zeng, Haibin
  email: zenghaibin_hit@163.com
  organization: Harbin Institute of Technology,Harbin,China,150001
– sequence: 2
  givenname: Zhihui
  surname: Lu
  fullname: Lu, Zhihui
  email: 25110690@qq.com
  organization: Aerospace System Engineering Shanghai,Shanghai,China,201109
– sequence: 3
  givenname: Yueyong
  surname: Lv
  fullname: Lv, Yueyong
  organization: Harbin Institute of Technology,Harbin,China,150001
– sequence: 4
  givenname: Jiaming
  surname: Qi
  fullname: Qi, Jiaming
  organization: Harbin Institute of Technology,Harbin,China,150001
BookMark eNotkMtOAjEYRqvRRECewMT0BQZ7md6WZOKFBHSBusVO-xer45R0BohvL0RWJzn5chbfEF20qQWEbimZMG6ouauqSggp5YQRxibGECYVO0Njo7TRWglNBZfnaEANLwuqpL5Cw677IkQSQ_kAfUy93fRxB_gZttk2B_T7lL-L2nbg8Xvstge5hLxLsV3jfew_8aztYX3cLpvoj3aRPOAqtX1ODQ4p44Vt42bb2D7la3QZbNPB-MQRenu4f62eivnL46yazovICO8LAVSQklCqmKesBulqxUItytIYqx1ALYOTzjPFnHbe1ZyGQAWoANqHmvARuvnvRgBYbXL8sfl3dTqE_wHpulkz
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CCC55666.2022.9902672
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9789887581536
9887581534
EISSN 1934-1768
EndPage 3572
ExternalDocumentID 9902672
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2020YFB1506700
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation
  grantid: 12150008,61973100,61876050
  funderid: 10.13039/501100001809
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-5e150401172d12be6cb72fb54499a8ceeb6fc6cd272c8cdcb31ff15e7fe8dfb03
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932071603117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:18:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5e150401172d12be6cb72fb54499a8ceeb6fc6cd272c8cdcb31ff15e7fe8dfb03
PageCount 6
ParticipantIDs ieee_primary_9902672
PublicationCentury 2000
PublicationDate 2022-July-25
PublicationDateYYYYMMDD 2022-07-25
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-25
  day: 25
PublicationDecade 2020
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev CCC
PublicationYear 2022
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
Score 2.1963642
Snippet It is difficult to estimate the relationship between the motion of joint and the motion of image features, making the Calibration-free visual servoing control...
SourceID ieee
SourceType Publisher
StartPage 3567
SubjectTerms Adaptation models
end-effector positioning
Estimation
Jacobian matrices
Jacobian matrix
Manipulators
online update
RBFN
Simulation
Training
uncalibrated visual servoing
Visualization
Title Adaptive Neural Network-based Visual Servoing with Integral Sliding Mode Control for Manipulator
URI https://ieeexplore.ieee.org/document/9902672
WOSCitedRecordID wos000932071603117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAXH61YX-zBo2mb3Wx2c5Rg0YOlB5Xe6j4hUJLSh7_fmaRWBS-eEpa8mAnfPHbmG0Jug44BGpMkchb-4CRoEWUhQKjCYxM0C4YpUw-bkOOxmk6zSYvc7XphvPd18Znv42m9l-8qu8FU2QCQk6USAHdPyrTp1fpC3RT5LZsOYMazOBvkeS7AVcEqBMb62zt_jVCpLcjo6H_vPibd71Y8OtkZmRPS8uUpOfzBItgh7_dOLxC1KDJt6Dkc6tLuCC2Uo2_FagOLCAoVXE8x80qfGpYIWJ4X-GCKM9Fo3tStU3Bk6bMui3q2V7XsktfRw0v-GG0HJ0QFG_J1JDy4eQmyvTEXM-NTaySIXSQQ3mgFX4wdPql1TDKrrLOGx6Af4WXwygUz5GekXValPydUBekZM4JnFnw7rjOvrLDBc4gLnbZpj3RQVrNFw40x24rp4u_lS3KA6sDcKBNXpL1ebvw12bcf62K1vKkV-gkovKRl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KFdSLj1Z8uwePpm1289qjBEuLbemhSm91nxAoaenD3-9MEquCF08JQ17MhJnZ2ZnvI-TBSR9cYxB4RsMfHDgZesI5WKpwXznJnGKJKsgm4tEomU7FuEYed7Mw1tqi-cy28LTYyzcLvcVSWRs8J4ticLh7yJxVTWt9-d0IES7LGWDGhS_aaZqGkKxgHwJjrereXyQqRQzpHv_v7Sek-T2MR8e7MHNKajY_I0c_cAQb5P3JyCX6LYpYG3IOh6K528MYZehbtt6CEN3CAq6nWHul_RInAsTzDB9MkRWNpmXnOoVUlg5lnhXsXotVk7x2nydpz6uoE7yMdfjGCy0kegHivTHjM2UjrWJQPKhNCJnAF-OMT6QNi5lOtNGK-2Ch0MbOJsapDj8n9XyR2wtCExdbxlTIhYbsjkthEx1qZzmsDI3U0SVpoK5myxIdY1ap6epv8T056E2Gg9mgP3q5JodoGqyUsvCG1Derrb0l-_pjk61Xd4VxPwHlSqeu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Adaptive+Neural+Network-based+Visual+Servoing+with+Integral+Sliding+Mode+Control+for+Manipulator&rft.au=Zeng%2C+Haibin&rft.au=Lu%2C+Zhihui&rft.au=Lv%2C+Yueyong&rft.au=Qi%2C+Jiaming&rft.date=2022-07-25&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=3567&rft.epage=3572&rft_id=info:doi/10.23919%2FCCC55666.2022.9902672&rft.externalDocID=9902672