Adaptive Neural Network-based Visual Servoing with Integral Sliding Mode Control for Manipulator
It is difficult to estimate the relationship between the motion of joint and the motion of image features, making the Calibration-free visual servoing control challenging. In traditional methods, the hand-eye relationship is usually approximated in purely online or offline ways. A practical scheme f...
Gespeichert in:
| Veröffentlicht in: | Chinese Control Conference S. 3567 - 3572 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Technical Committee on Control Theory, Chinese Association of Automation
25.07.2022
|
| Schlagworte: | |
| ISSN: | 1934-1768 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | It is difficult to estimate the relationship between the motion of joint and the motion of image features, making the Calibration-free visual servoing control challenging. In traditional methods, the hand-eye relationship is usually approximated in purely online or offline ways. A practical scheme for robot arm manipulation with both online and offline learning is proposed in this paper. The hand-eye relationship is formulated in a local linear format with Jacobian matrix, which is approximated by radial-basis function network (RBFN). Primitively, the RBFN is trained offline to form a relatively appropriate estimation of the Jacobian matrix, which is the beginning of the online step. Then, an online modification of the RBFN is executed, compensating the error caused by changes of camera's position and pose or insufficient training. The simulation experiments show that the proposed scheme can provide a reliable offline trained model and can adapt well to the changes of camera's position and pose due to the online update law. |
|---|---|
| AbstractList | It is difficult to estimate the relationship between the motion of joint and the motion of image features, making the Calibration-free visual servoing control challenging. In traditional methods, the hand-eye relationship is usually approximated in purely online or offline ways. A practical scheme for robot arm manipulation with both online and offline learning is proposed in this paper. The hand-eye relationship is formulated in a local linear format with Jacobian matrix, which is approximated by radial-basis function network (RBFN). Primitively, the RBFN is trained offline to form a relatively appropriate estimation of the Jacobian matrix, which is the beginning of the online step. Then, an online modification of the RBFN is executed, compensating the error caused by changes of camera's position and pose or insufficient training. The simulation experiments show that the proposed scheme can provide a reliable offline trained model and can adapt well to the changes of camera's position and pose due to the online update law. |
| Author | Lu, Zhihui Zeng, Haibin Qi, Jiaming Lv, Yueyong |
| Author_xml | – sequence: 1 givenname: Haibin surname: Zeng fullname: Zeng, Haibin email: zenghaibin_hit@163.com organization: Harbin Institute of Technology,Harbin,China,150001 – sequence: 2 givenname: Zhihui surname: Lu fullname: Lu, Zhihui email: 25110690@qq.com organization: Aerospace System Engineering Shanghai,Shanghai,China,201109 – sequence: 3 givenname: Yueyong surname: Lv fullname: Lv, Yueyong organization: Harbin Institute of Technology,Harbin,China,150001 – sequence: 4 givenname: Jiaming surname: Qi fullname: Qi, Jiaming organization: Harbin Institute of Technology,Harbin,China,150001 |
| BookMark | eNotkMtOAjEYRqvRRECewMT0BQZ7md6WZOKFBHSBusVO-xer45R0BohvL0RWJzn5chbfEF20qQWEbimZMG6ouauqSggp5YQRxibGECYVO0Njo7TRWglNBZfnaEANLwuqpL5Cw677IkQSQ_kAfUy93fRxB_gZttk2B_T7lL-L2nbg8Xvstge5hLxLsV3jfew_8aztYX3cLpvoj3aRPOAqtX1ODQ4p44Vt42bb2D7la3QZbNPB-MQRenu4f62eivnL46yazovICO8LAVSQklCqmKesBulqxUItytIYqx1ALYOTzjPFnHbe1ZyGQAWoANqHmvARuvnvRgBYbXL8sfl3dTqE_wHpulkz |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/CCC55666.2022.9902672 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9789887581536 9887581534 |
| EISSN | 1934-1768 |
| EndPage | 3572 |
| ExternalDocumentID | 9902672 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFB1506700 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation grantid: 12150008,61973100,61876050 funderid: 10.13039/501100001809 |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-5e150401172d12be6cb72fb54499a8ceeb6fc6cd272c8cdcb31ff15e7fe8dfb03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932071603117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:18:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-5e150401172d12be6cb72fb54499a8ceeb6fc6cd272c8cdcb31ff15e7fe8dfb03 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9902672 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-July-25 |
| PublicationDateYYYYMMDD | 2022-07-25 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-July-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control Conference |
| PublicationTitleAbbrev | CCC |
| PublicationYear | 2022 |
| Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
| Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
| SSID | ssj0060913 |
| Score | 2.1963642 |
| Snippet | It is difficult to estimate the relationship between the motion of joint and the motion of image features, making the Calibration-free visual servoing control... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3567 |
| SubjectTerms | Adaptation models end-effector positioning Estimation Jacobian matrices Jacobian matrix Manipulators online update RBFN Simulation Training uncalibrated visual servoing Visualization |
| Title | Adaptive Neural Network-based Visual Servoing with Integral Sliding Mode Control for Manipulator |
| URI | https://ieeexplore.ieee.org/document/9902672 |
| WOSCitedRecordID | wos000932071603117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAXH61YX-zBo2mb3Wx2c5Rg0YOlB5Xe6j4hUJLSh7_fmaRWBS-eEpa8mAnfPHbmG0Jug44BGpMkchb-4CRoEWUhQKjCYxM0C4YpUw-bkOOxmk6zSYvc7XphvPd18Znv42m9l-8qu8FU2QCQk6USAHdPyrTp1fpC3RT5LZsOYMazOBvkeS7AVcEqBMb62zt_jVCpLcjo6H_vPibd71Y8OtkZmRPS8uUpOfzBItgh7_dOLxC1KDJt6Dkc6tLuCC2Uo2_FagOLCAoVXE8x80qfGpYIWJ4X-GCKM9Fo3tStU3Bk6bMui3q2V7XsktfRw0v-GG0HJ0QFG_J1JDy4eQmyvTEXM-NTaySIXSQQ3mgFX4wdPql1TDKrrLOGx6Af4WXwygUz5GekXValPydUBekZM4JnFnw7rjOvrLDBc4gLnbZpj3RQVrNFw40x24rp4u_lS3KA6sDcKBNXpL1ebvw12bcf62K1vKkV-gkovKRl |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KFdSLj1Z8uwePpm1289qjBEuLbemhSm91nxAoaenD3-9MEquCF08JQ17MhJnZ2ZnvI-TBSR9cYxB4RsMfHDgZesI5WKpwXznJnGKJKsgm4tEomU7FuEYed7Mw1tqi-cy28LTYyzcLvcVSWRs8J4ticLh7yJxVTWt9-d0IES7LGWDGhS_aaZqGkKxgHwJjrereXyQqRQzpHv_v7Sek-T2MR8e7MHNKajY_I0c_cAQb5P3JyCX6LYpYG3IOh6K528MYZehbtt6CEN3CAq6nWHul_RInAsTzDB9MkRWNpmXnOoVUlg5lnhXsXotVk7x2nydpz6uoE7yMdfjGCy0kegHivTHjM2UjrWJQPKhNCJnAF-OMT6QNi5lOtNGK-2Ch0MbOJsapDj8n9XyR2wtCExdbxlTIhYbsjkthEx1qZzmsDI3U0SVpoK5myxIdY1ap6epv8T056E2Gg9mgP3q5JodoGqyUsvCG1Derrb0l-_pjk61Xd4VxPwHlSqeu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Adaptive+Neural+Network-based+Visual+Servoing+with+Integral+Sliding+Mode+Control+for+Manipulator&rft.au=Zeng%2C+Haibin&rft.au=Lu%2C+Zhihui&rft.au=Lv%2C+Yueyong&rft.au=Qi%2C+Jiaming&rft.date=2022-07-25&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=3567&rft.epage=3572&rft_id=info:doi/10.23919%2FCCC55666.2022.9902672&rft.externalDocID=9902672 |