Distribution-based Particle Data Reduction for In-situ Analysis and Visualization of Large-scale N-body Cosmological Simulations
Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of particles of high space-time fidelity can be simulated by supercomputers. However, limited computer storage can only hold a small subset of the...
Gespeichert in:
| Veröffentlicht in: | IEEE Pacific Visualization Symposium S. 171 - 180 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2020
|
| Schlagworte: | |
| ISSN: | 2165-8773 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of particles of high space-time fidelity can be simulated by supercomputers. However, limited computer storage can only hold a small subset of the simulation output for analysis, which makes the understanding of the underlying cosmological phenomena difficult. To alleviate the problem, we design an in-situ data reduction method for large-scale unstructured particle data. During the data generation phase, we use a combined k-dimensional partitioning and Gaussian mixture model approach to reduce the data by utilizing probability distributions. We offer a model evaluation criterion to examine the quality of the probabilistic distribution models, which allows us to identify and improve low-quality models. After the in-situ processing, the particle data size is greatly reduced, which satisfies the requirements from the domain experts. By comparing the astronomical attributes and visualizations of the reconstructed data with the raw data, we demonstrate the effectiveness of our in-situ particle data reduction technique. |
|---|---|
| AbstractList | Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of particles of high space-time fidelity can be simulated by supercomputers. However, limited computer storage can only hold a small subset of the simulation output for analysis, which makes the understanding of the underlying cosmological phenomena difficult. To alleviate the problem, we design an in-situ data reduction method for large-scale unstructured particle data. During the data generation phase, we use a combined k-dimensional partitioning and Gaussian mixture model approach to reduce the data by utilizing probability distributions. We offer a model evaluation criterion to examine the quality of the probabilistic distribution models, which allows us to identify and improve low-quality models. After the in-situ processing, the particle data size is greatly reduced, which satisfies the requirements from the domain experts. By comparing the astronomical attributes and visualizations of the reconstructed data with the raw data, we demonstrate the effectiveness of our in-situ particle data reduction technique. |
| Author | Xu, Jiayi Shen, Han-Wei Liao, Shihong Li, Guan Zhang, Tianchi Shan, Guihua Lu, Zhonghua Wang, Ko-Chih |
| Author_xml | – sequence: 1 givenname: Guan surname: Li fullname: Li, Guan organization: Chinese Academy of Sciences,Computer Network Information Center – sequence: 2 givenname: Jiayi surname: Xu fullname: Xu, Jiayi organization: The Ohio State University – sequence: 3 givenname: Tianchi surname: Zhang fullname: Zhang, Tianchi organization: Chinese Academy of Sciences,National Astronomical Observatories – sequence: 4 givenname: Guihua surname: Shan fullname: Shan, Guihua organization: Chinese Academy of Sciences,Computer Network Information Center – sequence: 5 givenname: Han-Wei surname: Shen fullname: Shen, Han-Wei organization: The Ohio State University – sequence: 6 givenname: Ko-Chih surname: Wang fullname: Wang, Ko-Chih organization: National Taiwan Normal University – sequence: 7 givenname: Shihong surname: Liao fullname: Liao, Shihong organization: Chinese Academy of Sciences,National Astronomical Observatories – sequence: 8 givenname: Zhonghua surname: Lu fullname: Lu, Zhonghua organization: Chinese Academy of Sciences,Computer Network Information Center |
| BookMark | eNotT0tPwzAYCwgkxtgv4BJ-QEaSpklznDYekyaYeF2nL68pqGtQ0x7GiZ9ON_DFkm1Z9iU6a1LjEbphdMoY1bdrsDFE-xGzqJhSU075wankCZpoNUi8YqXUip-iEWeyJJVSxQWa5PxJB2jBykqO0M8i5q6Npu9iaoiB7B1eQ9tFW3u8gA7wi3e9Pbg4pBYvG5Jj1-NZA_U-x4yhcXgY0UMdv-EYSwGvoN16ki0MJU_EJLfH85R3qU7bOIj4Ne76-pjOV-g8QJ395J_H6P3-7m3-SFbPD8v5bEUip0VHSqctlxpYCIYGFajiwlhjuJHCDteEZ84GVwKoEpQR0jvQXirBaSmpksUYXf_1Ru_95quNO2j3G00ryQtV_AIuD2dt |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PacificVis48177.2020.1186 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781728156972 1728156971 |
| EISSN | 2165-8773 |
| EndPage | 180 |
| ExternalDocumentID | 9086237 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-5d9c269a1ffb0f7f0724bcbb2b64c8774e1dcfd5aa75a7b46eda9e67420560763 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578516400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 03:03:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-5d9c269a1ffb0f7f0724bcbb2b64c8774e1dcfd5aa75a7b46eda9e67420560763 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9086237 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-June |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-June |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Pacific Visualization Symposium |
| PublicationTitleAbbrev | PacificVis |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000941586 |
| Score | 2.1507454 |
| Snippet | Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 171 |
| SubjectTerms | Analytical models Computational modeling Data models Data visualization Human-centered computing Probabilistic logic Probability distribution Scientific visualization Supercomputers Visualization Visualization application domains |
| Title | Distribution-based Particle Data Reduction for In-situ Analysis and Visualization of Large-scale N-body Cosmological Simulations |
| URI | https://ieeexplore.ieee.org/document/9086237 |
| WOSCitedRecordID | wos000578516400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKhRAsPFrEW0ZixDSJYzueWyqQqqriUXWr_JQyNEFNisTGT8dO0tKBhS2KF8dn393n3PcdAHc0NIoT7g6SchAlxoFAHIcUqdgSY5VDZBV9bDpi43Eym_FJC9xvuDDGmKr4zDz4x-pfvs7Vyl-V9bjPvzHbATuM0ZqrtblPcTAlJAndA7eNjGavqWqbpkWchIw5LBj5Ec-a3mqkUsWR4eH_ZnAEur-EPDjZhJpj0DLZCTjY0hLsgO-Bl8BtulchH5w0nDT7Ag5EKeCLV2n1o9AlqvA5Q0VaruBalQSKTEP3FZ5kWVMzYW7hyBeKo8IZ0sAxkrn-gv28WKw9JnxNF03_r6IL3oePb_0n1LRXQGkU4BIRzVVEuQitlYFlNmBRLJWUkaSxSlxaaEKtrCZCMCKYjKnRghvqsLRLmgLnl05BO8szcwagIJY6kzPJrQNohAnPz-UGYx1jI7A6Bx2_lvOPWkFj3izjxd-vL8G-t1VdkHUF2uVyZa7Brvos02J5U5n9BxxMsWs |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VglguLC1ix0gcMc3u-NxStSJUFZSqt8rxIuXQBDUpEjc-HTtNSw9cuEXxJfE4nnnOvPcA7gNbcupT_SFxDVE812KYunaAuad8qbhGZCV9bByRwSCcTOiwBg9rLoyUsmw-k4_msvyXLzK-MEdlLWrqb5dswbZxzqrYWusTFQ1UbD8MduGuEtJsVX1t4yT3QpsQjQYdM2J40xtWKmUm6R7-7xmOoPlLyUPDdbI5hppMT-BgQ02wAd8dI4Jb-Vdhk54EGlYrA3VYwdCr0Wk1o0iXqqif4jwpFmilS4JYKpB-C0OzXJIzUaZQZFrFca5DKdEAx5n4Qu0sn632TPSWzCoHsLwJ792nUbuHK4MFnDiWW2BfUO4ElNlKxZYiyiKOF_M4duLA46EuDKUtuBI-Y8RnJPYCKRiVgUbTumyy9M50CvU0S-UZIOarQAedxFRpiOYTZhi6VLqu8FzJXH4ODTOX04-lhsa0msaLv2_fwl5v9BJNo_7g-RL2TdyW7VlXUC_mC3kNO_yzSPL5TbkEfgCCC7S0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Pacific+Visualization+Symposium&rft.atitle=Distribution-based+Particle+Data+Reduction+for+In-situ+Analysis+and+Visualization+of+Large-scale+N-body+Cosmological+Simulations&rft.au=Li%2C+Guan&rft.au=Xu%2C+Jiayi&rft.au=Zhang%2C+Tianchi&rft.au=Shan%2C+Guihua&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2165-8773&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1109%2FPacificVis48177.2020.1186&rft.externalDocID=9086237 |