Distribution-based Particle Data Reduction for In-situ Analysis and Visualization of Large-scale N-body Cosmological Simulations

Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of particles of high space-time fidelity can be simulated by supercomputers. However, limited computer storage can only hold a small subset of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Pacific Visualization Symposium S. 171 - 180
Hauptverfasser: Li, Guan, Xu, Jiayi, Zhang, Tianchi, Shan, Guihua, Shen, Han-Wei, Wang, Ko-Chih, Liao, Shihong, Lu, Zhonghua
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2020
Schlagworte:
ISSN:2165-8773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of particles of high space-time fidelity can be simulated by supercomputers. However, limited computer storage can only hold a small subset of the simulation output for analysis, which makes the understanding of the underlying cosmological phenomena difficult. To alleviate the problem, we design an in-situ data reduction method for large-scale unstructured particle data. During the data generation phase, we use a combined k-dimensional partitioning and Gaussian mixture model approach to reduce the data by utilizing probability distributions. We offer a model evaluation criterion to examine the quality of the probabilistic distribution models, which allows us to identify and improve low-quality models. After the in-situ processing, the particle data size is greatly reduced, which satisfies the requirements from the domain experts. By comparing the astronomical attributes and visualizations of the reconstructed data with the raw data, we demonstrate the effectiveness of our in-situ particle data reduction technique.
AbstractList Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of particles of high space-time fidelity can be simulated by supercomputers. However, limited computer storage can only hold a small subset of the simulation output for analysis, which makes the understanding of the underlying cosmological phenomena difficult. To alleviate the problem, we design an in-situ data reduction method for large-scale unstructured particle data. During the data generation phase, we use a combined k-dimensional partitioning and Gaussian mixture model approach to reduce the data by utilizing probability distributions. We offer a model evaluation criterion to examine the quality of the probabilistic distribution models, which allows us to identify and improve low-quality models. After the in-situ processing, the particle data size is greatly reduced, which satisfies the requirements from the domain experts. By comparing the astronomical attributes and visualizations of the reconstructed data with the raw data, we demonstrate the effectiveness of our in-situ particle data reduction technique.
Author Xu, Jiayi
Shen, Han-Wei
Liao, Shihong
Li, Guan
Zhang, Tianchi
Shan, Guihua
Lu, Zhonghua
Wang, Ko-Chih
Author_xml – sequence: 1
  givenname: Guan
  surname: Li
  fullname: Li, Guan
  organization: Chinese Academy of Sciences,Computer Network Information Center
– sequence: 2
  givenname: Jiayi
  surname: Xu
  fullname: Xu, Jiayi
  organization: The Ohio State University
– sequence: 3
  givenname: Tianchi
  surname: Zhang
  fullname: Zhang, Tianchi
  organization: Chinese Academy of Sciences,National Astronomical Observatories
– sequence: 4
  givenname: Guihua
  surname: Shan
  fullname: Shan, Guihua
  organization: Chinese Academy of Sciences,Computer Network Information Center
– sequence: 5
  givenname: Han-Wei
  surname: Shen
  fullname: Shen, Han-Wei
  organization: The Ohio State University
– sequence: 6
  givenname: Ko-Chih
  surname: Wang
  fullname: Wang, Ko-Chih
  organization: National Taiwan Normal University
– sequence: 7
  givenname: Shihong
  surname: Liao
  fullname: Liao, Shihong
  organization: Chinese Academy of Sciences,National Astronomical Observatories
– sequence: 8
  givenname: Zhonghua
  surname: Lu
  fullname: Lu, Zhonghua
  organization: Chinese Academy of Sciences,Computer Network Information Center
BookMark eNotT0tPwzAYCwgkxtgv4BJ-QEaSpklznDYekyaYeF2nL68pqGtQ0x7GiZ9ON_DFkm1Z9iU6a1LjEbphdMoY1bdrsDFE-xGzqJhSU075wankCZpoNUi8YqXUip-iEWeyJJVSxQWa5PxJB2jBykqO0M8i5q6Npu9iaoiB7B1eQ9tFW3u8gA7wi3e9Pbg4pBYvG5Jj1-NZA_U-x4yhcXgY0UMdv-EYSwGvoN16ki0MJU_EJLfH85R3qU7bOIj4Ne76-pjOV-g8QJ395J_H6P3-7m3-SFbPD8v5bEUip0VHSqctlxpYCIYGFajiwlhjuJHCDteEZ84GVwKoEpQR0jvQXirBaSmpksUYXf_1Ru_95quNO2j3G00ryQtV_AIuD2dt
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PacificVis48177.2020.1186
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728156972
1728156971
EISSN 2165-8773
EndPage 180
ExternalDocumentID 9086237
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-5d9c269a1ffb0f7f0724bcbb2b64c8774e1dcfd5aa75a7b46eda9e67420560763
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578516400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:03:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5d9c269a1ffb0f7f0724bcbb2b64c8774e1dcfd5aa75a7b46eda9e67420560763
PageCount 10
ParticipantIDs ieee_primary_9086237
PublicationCentury 2000
PublicationDate 2020-June
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June
PublicationDecade 2020
PublicationTitle IEEE Pacific Visualization Symposium
PublicationTitleAbbrev PacificVis
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000941586
Score 2.1507454
Snippet Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of...
SourceID ieee
SourceType Publisher
StartPage 171
SubjectTerms Analytical models
Computational modeling
Data models
Data visualization
Human-centered computing
Probabilistic logic
Probability distribution
Scientific visualization
Supercomputers
Visualization
Visualization application domains
Title Distribution-based Particle Data Reduction for In-situ Analysis and Visualization of Large-scale N-body Cosmological Simulations
URI https://ieeexplore.ieee.org/document/9086237
WOSCitedRecordID wos000578516400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKhRAsPFrEW0ZixDSJYzueWyqQqqriUXWr_JQyNEFNisTGT8dO0tKBhS2KF8dn393n3PcdAHc0NIoT7g6SchAlxoFAHIcUqdgSY5VDZBV9bDpi43Eym_FJC9xvuDDGmKr4zDz4x-pfvs7Vyl-V9bjPvzHbATuM0ZqrtblPcTAlJAndA7eNjGavqWqbpkWchIw5LBj5Ec-a3mqkUsWR4eH_ZnAEur-EPDjZhJpj0DLZCTjY0hLsgO-Bl8BtulchH5w0nDT7Ag5EKeCLV2n1o9AlqvA5Q0VaruBalQSKTEP3FZ5kWVMzYW7hyBeKo8IZ0sAxkrn-gv28WKw9JnxNF03_r6IL3oePb_0n1LRXQGkU4BIRzVVEuQitlYFlNmBRLJWUkaSxSlxaaEKtrCZCMCKYjKnRghvqsLRLmgLnl05BO8szcwagIJY6kzPJrQNohAnPz-UGYx1jI7A6Bx2_lvOPWkFj3izjxd-vL8G-t1VdkHUF2uVyZa7Brvos02J5U5n9BxxMsWs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VglguLC1ix0gcMc3u-NxStSJUFZSqt8rxIuXQBDUpEjc-HTtNSw9cuEXxJfE4nnnOvPcA7gNbcupT_SFxDVE812KYunaAuad8qbhGZCV9bByRwSCcTOiwBg9rLoyUsmw-k4_msvyXLzK-MEdlLWrqb5dswbZxzqrYWusTFQ1UbD8MduGuEtJsVX1t4yT3QpsQjQYdM2J40xtWKmUm6R7-7xmOoPlLyUPDdbI5hppMT-BgQ02wAd8dI4Jb-Vdhk54EGlYrA3VYwdCr0Wk1o0iXqqif4jwpFmilS4JYKpB-C0OzXJIzUaZQZFrFca5DKdEAx5n4Qu0sn632TPSWzCoHsLwJ792nUbuHK4MFnDiWW2BfUO4ElNlKxZYiyiKOF_M4duLA46EuDKUtuBI-Y8RnJPYCKRiVgUbTumyy9M50CvU0S-UZIOarQAedxFRpiOYTZhi6VLqu8FzJXH4ODTOX04-lhsa0msaLv2_fwl5v9BJNo_7g-RL2TdyW7VlXUC_mC3kNO_yzSPL5TbkEfgCCC7S0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Pacific+Visualization+Symposium&rft.atitle=Distribution-based+Particle+Data+Reduction+for+In-situ+Analysis+and+Visualization+of+Large-scale+N-body+Cosmological+Simulations&rft.au=Li%2C+Guan&rft.au=Xu%2C+Jiayi&rft.au=Zhang%2C+Tianchi&rft.au=Shan%2C+Guihua&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2165-8773&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1109%2FPacificVis48177.2020.1186&rft.externalDocID=9086237