Automatic Segmentation of Finger Bone Regions from CR Images Using Improved DeepLabv3

The number of hospitalized patients and the number of people requiring nursing care are serious social problems in Japan due to the increasing elderly population. The major causes of bedridden patients are bone and joint disorders caused by rheumatoid arthritis and osteoporosis. Early detection and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Control, Automation and Systems (Online) s. 1788 - 1791
Hlavní autoři: Ono, Hikaru, Murakami, Seiichi, Kamiya, Tohru, Aoki, Takatoshi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ICROS 12.10.2021
Témata:
ISSN:2642-3901
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The number of hospitalized patients and the number of people requiring nursing care are serious social problems in Japan due to the increasing elderly population. The major causes of bedridden patients are bone and joint disorders caused by rheumatoid arthritis and osteoporosis. Early detection and treatment of these bone diseases are important because they significantly interfere with the quality of life (QOL) as the symptoms progress. Visual screening based on CR is used as a diagnosing tool for bone diseases. However, imaging diagnosis is subjective and lacks objectivity, and there is a possibility that lesions may be overlooked. In addition, it is difficult to find out subtle changes from images, increasing the workload for doctors. To solve these problems, there is a need to develop a computer aided diagnosis (CAD) system that can quantitatively diagnose bone diseases. We propose a method for automatic extraction of phalange regions for the CAD system to diagnose these diseases. The proposed method can extract the phalanges with high accuracy by using the improved DeepLabv3+. In this paper, we apply the proposed method to 101 cases of CR images and mIoU of 0.949 was obtained.
AbstractList The number of hospitalized patients and the number of people requiring nursing care are serious social problems in Japan due to the increasing elderly population. The major causes of bedridden patients are bone and joint disorders caused by rheumatoid arthritis and osteoporosis. Early detection and treatment of these bone diseases are important because they significantly interfere with the quality of life (QOL) as the symptoms progress. Visual screening based on CR is used as a diagnosing tool for bone diseases. However, imaging diagnosis is subjective and lacks objectivity, and there is a possibility that lesions may be overlooked. In addition, it is difficult to find out subtle changes from images, increasing the workload for doctors. To solve these problems, there is a need to develop a computer aided diagnosis (CAD) system that can quantitatively diagnose bone diseases. We propose a method for automatic extraction of phalange regions for the CAD system to diagnose these diseases. The proposed method can extract the phalanges with high accuracy by using the improved DeepLabv3+. In this paper, we apply the proposed method to 101 cases of CR images and mIoU of 0.949 was obtained.
Author Ono, Hikaru
Murakami, Seiichi
Aoki, Takatoshi
Kamiya, Tohru
Author_xml – sequence: 1
  givenname: Hikaru
  surname: Ono
  fullname: Ono, Hikaru
  organization: Kyushu Institute of Technology,Kitakyushu,Fukuoka,Japan,804-8550
– sequence: 2
  givenname: Seiichi
  surname: Murakami
  fullname: Murakami, Seiichi
  organization: University of Occupational and Environmental Health,Kitakyusyu,Japan,807-8555
– sequence: 3
  givenname: Tohru
  surname: Kamiya
  fullname: Kamiya, Tohru
  organization: Kyushu Institute of Technology,Kitakyushu,Fukuoka,Japan,804-8550
– sequence: 4
  givenname: Takatoshi
  surname: Aoki
  fullname: Aoki, Takatoshi
  organization: University of Occupational and Environmental Health,Kitakyusyu,Japan,807-8555
BookMark eNotUNtKw0AUXEXBtvYLfNkfSNxzzibNPsZoNRAQWvNcNsnZEDEXkljw7w20T3NhmIFZi7uu71gICcpHMmCe0ySJjwHudOCjQvBNqE0U6huxjowhhADB3IoVhho9MgoexHaavpVShEqrMFqJPP6d-9bOTSmPXLfczQvvO9k7uW-6mkf5smzKA9eLO0k39q1MDjJtbc2TzKcls4hh7M9cyVfmIbPFmR7FvbM_E2-vuBH5_u0r-fCyz_c0iTOvQUWzF1RYFtpBRZEmKgAJSo1WMzmgYqciDgJLzjJrrIC0jRyXoMACcuWco414uvQ2zHwaxqa149_p-gL9A3gEVAY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ICCAS52745.2021.9649864
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 8993215219
9788993215212
EISSN 2642-3901
EndPage 1791
ExternalDocumentID 9649864
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-5d2cb4f1d38433b1231c42a4e3f13b708e55a3faee42d134a8fec101a12edfff3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750950700252&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 04:58:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5d2cb4f1d38433b1231c42a4e3f13b708e55a3faee42d134a8fec101a12edfff3
PageCount 4
ParticipantIDs ieee_primary_9649864
PublicationCentury 2000
PublicationDate 2021-Oct.-12
PublicationDateYYYYMMDD 2021-10-12
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-12
  day: 12
PublicationDecade 2020
PublicationTitle International Conference on Control, Automation and Systems (Online)
PublicationTitleAbbrev ICCAS
PublicationYear 2021
Publisher ICROS
Publisher_xml – name: ICROS
SSID ssj0003204068
Score 1.8010014
Snippet The number of hospitalized patients and the number of people requiring nursing care are serious social problems in Japan due to the increasing elderly...
SourceID ieee
SourceType Publisher
StartPage 1788
SubjectTerms Bones
Computer-Aided Diagnosis System
DeepLabv3+ Convolutional Neural Network
Image segmentation
Imaging
Medical services
Osteoporosis
Rheumatoid Arthritis
Segmentation
Sociology
Visualization
Title Automatic Segmentation of Finger Bone Regions from CR Images Using Improved DeepLabv3
URI https://ieeexplore.ieee.org/document/9649864
WOSCitedRecordID wos000750950700252&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwEBZJ6dAufSSlbzR0rBNLJ8f2mLoNDYQQkgayBVs6lQyxQ16_v5Js0ha6dBMCwXFn-3Tn7_uOkCcpYwxDX3opR-WJNEIvVgF4gVLM91GkEt3UkkE4HEazWTyqkecDFwYRHfgMW3bp_uWrQu5sq6wdd4RVE6-Tehh2Sq7WoZ8C3DyOnagE63CIWdzuJ0l3EpiyKzB1IGet6vivOSoujfTO_mfAOWl-8_Ho6JBpLkgN80ty-kNKsEGm3d22cPKrdIKfy4pRlNNC057r3NGXIkc6Ros_3lDLKqHJmPaX5nuyoQ44QMsGAyr6irgapNkemmTae_tI3r1qZIK34D5sjYu5zIRmCiIBkJm0xKTgqUDQDLLQjzAIUtApouCKgYmNRmneypSZUGmt4Yoc5caca0JDc1eAiCsp0aoC6gwYM2U4YGAVbpi-IQ3roPmqVMWYV765_Xv7jpzYGHgOC3JPjrbrHT6QY7nfLjbrRxfKL4uon9U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gmqgXH2h8uwePFrqP0vaIVQKxEsIj4Uba3VnDgZZA4fe7uyWoiRdvmz1sJjNtZ2f6fd8g9CRECL7vCiehIB2eBOCE0mOOJyVxXeCJADu1JPZ7vWAyCfsV9LzjwgCABZ9B3Sztv3yZi7VplTXCJjdq4nto3-OcuiVba9dRYVQ_kM2ghOtQFpKw0Y2i1tDThZenK0FK6tsDfk1SsYmkffI_E07RxTcjD_d3ueYMVSA7R8c_xARraNxaF7kVYMVD-JxvOUUZzhVu294dfskzwAMwCOQVNrwSHA1wd66_KCtsoQO4bDGAxK8AizhJN-wCjdtvo6jjbIcmODPqskI7mYqUKyJZwBlLdWIigtOEA1OEpb4bgOclTCUAnErCdHQUCP1eJkQHSynFLlE10-ZcIezr2wILqBQCjC6gShkhuhBn4BmNG6KuUc04aLoodTGmW9_c_L39iA47o494Gnd777foyMTDsciQO1Qtlmu4RwdiU8xWywcb1i8M7qMc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Automation+and+Systems+%28Online%29&rft.atitle=Automatic+Segmentation+of+Finger+Bone+Regions+from+CR+Images+Using+Improved+DeepLabv3&rft.au=Ono%2C+Hikaru&rft.au=Murakami%2C+Seiichi&rft.au=Kamiya%2C+Tohru&rft.au=Aoki%2C+Takatoshi&rft.date=2021-10-12&rft.pub=ICROS&rft.eissn=2642-3901&rft.spage=1788&rft.epage=1791&rft_id=info:doi/10.23919%2FICCAS52745.2021.9649864&rft.externalDocID=9649864