Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however, assumes disjoint sets of classes as tasks and is less realistic rather artificial. Instead, we focus on 'blurry' task boundary; where tasks shares classes and is more reali...
Gespeichert in:
| Veröffentlicht in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 8214 - 8223 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2021
|
| Schlagworte: | |
| ISSN: | 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however, assumes disjoint sets of classes as tasks and is less realistic rather artificial. Instead, we focus on 'blurry' task boundary; where tasks shares classes and is more realistic and practical. To address such task, we argue the importance of diversity of samples in an episodic memory. To enhance the sample diversity in the memory, we propose a novel memory management strategy based on per-sample classification uncertainty and data augmentation, named Rainbow Memory (RM). With extensive empirical validations on MNIST, CIFAR10, CIFAR100, and ImageNet datasets, we show that the proposed method significantly improves the accuracy in blurry continual learning setups, outperforming state of the arts by large margins despite its simplicity. Code and data splits will be available in https://github.com/clovaai/rainbow-memory. |
|---|---|
| AbstractList | Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however, assumes disjoint sets of classes as tasks and is less realistic rather artificial. Instead, we focus on 'blurry' task boundary; where tasks shares classes and is more realistic and practical. To address such task, we argue the importance of diversity of samples in an episodic memory. To enhance the sample diversity in the memory, we propose a novel memory management strategy based on per-sample classification uncertainty and data augmentation, named Rainbow Memory (RM). With extensive empirical validations on MNIST, CIFAR10, CIFAR100, and ImageNet datasets, we show that the proposed method significantly improves the accuracy in blurry continual learning setups, outperforming state of the arts by large margins despite its simplicity. Code and data splits will be available in https://github.com/clovaai/rainbow-memory. |
| Author | Bang, Jihwan Ha, Jung-Woo Kim, Heesu Yoo, YoungJoon Choi, Jonghyun |
| Author_xml | – sequence: 1 givenname: Jihwan surname: Bang fullname: Bang, Jihwan email: jihwan.bang@navercorp.com organization: Search Solutions, Inc – sequence: 2 givenname: Heesu surname: Kim fullname: Kim, Heesu email: heesu.kim89@navercorp.com organization: NAVER CLOVA – sequence: 3 givenname: YoungJoon surname: Yoo fullname: Yoo, YoungJoon email: youngjoon.yoo@navercorp.com organization: NAVER CLOVA – sequence: 4 givenname: Jung-Woo surname: Ha fullname: Ha, Jung-Woo email: jungwoo.ha@navercorp.com organization: NAVER CLOVA – sequence: 5 givenname: Jonghyun surname: Choi fullname: Choi, Jonghyun email: jhc@gist.ac.kr organization: GIST |
| BookMark | eNotzMlOwzAUQFGDQKIt_QJY-AcSnu14YodCGaQgUBm2lZ08g1HiVEmg6t-zoKu7ObpzcpL6hIRcMsgZA3tVfrysC1UInXPgLAcwjB-ROVNKFoUEy4_JjIESmbLMnpHlOH4DgOCMKWtmpFy7mHy_o0_Y9cP-mpZ9mmL6cS2t0A0ppk-6i9MXdQdB-0Bv4y8OI9JX121bHM_JaXDtiMtDF-T9bvVWPmTV8_1jeVNlkYOYMum9FwEb0RiJgmuNijnbWDS1gtpJgbXwDLUKCK4I0oK0PHgusAFQzokFufj_RkTcbIfYuWG_sVJrA0b8AViFTVY |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR46437.2021.00812 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665445092 9781665445092 |
| EISSN | 1063-6919 |
| EndPage | 8223 |
| ExternalDocumentID | 9577808 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation funderid: 10.13039/501100001321 – fundername: Defense Acquisition Program Administration funderid: 10.13039/501100003626 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-5bbb3fed3d85e3277e61a9d9e8c60ca53ec3b1e76fe0a4f590592fb23ed006aa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 259 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739917308044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-5bbb3fed3d85e3277e61a9d9e8c60ca53ec3b1e76fe0a4f590592fb23ed006aa3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9577808 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.6365714 |
| Snippet | Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however, assumes disjoint sets of classes as tasks... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 8214 |
| SubjectTerms | Codes Computer vision Learning (artificial intelligence) Memory management Sampling methods Training Uncertainty |
| Title | Rainbow Memory: Continual Learning with a Memory of Diverse Samples |
| URI | https://ieeexplore.ieee.org/document/9577808 |
| WOSCitedRecordID | wos000739917308044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eCpaiu-ycGja3eT7CbxWi0etBRf9FbymEgvbelD8N-bbEP14MXThiUQmGSY5_cNwJWPdlg5nilrTcZ1yYLOoctMcG210N4ZXbPrP4rBQI5GatiA6y0WBhHr5jO8icu6lu9mdh1TZV1VCiEjsndHiGqD1drmU1iIZColEzquyFW39z585rEuFaJAWkQe0zh28tcMldqE9Fv_O3wfOj9YPDLcWpkDaOD0EFrJeSRJNZdt6KVKDXmKvbNftyTyTk0i4ShJHKofJCZdiU47yMyTu7orA8mLjiTByw689e9few9ZmpCQTWjOVllpjGEeHXOyREaFwKrQyimUtsptEDxaZgoUlcdcc1-q4ExRbyhDF7RNa3YEzelsisdACuQypxgels254EZSVTAZviGELY2UJ9COMhnPNyQY4ySO079_n8FeFPqmp-ocmqvFGi9g136uJsvFZX1z35USmoM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6KCnqq2opv9-DR2CSbdHe9VkvFthSt0lvZx0R6aaUPwX_vTrpUD148JYSFwMwO8_y-AbguyA8rl0XKWhNlOufe5tBFxoe2WujCGV2y63dFvy9HIzWowM0GC4OI5fAZ3tJr2ct3M7uiUllD5UJIQvZu0-asfI3W2lRUuM9lmkoGfFwSq0brbfCcUWfK54FpQkymtHjy1xaV0om0q__7_T7Uf9B4bLDxMwdQwekhVEP4yIJxLmrQCr0a1qPp2a87RsxTE6IcZYFF9Z1R2ZXpcILNCnZfzmUge9FEE7yow2v7YdjqRGFHQjRJY76McmMML9BxJ3PkqRDYTLRyCqVtxtaLHi03CYpmgbHOilz5cCotTMrReXvTmh_B1nQ2xWNgCWYyTtFfLRtnIjMyVQmX_umT2NxIeQI1ksn4Y02DMQ7iOP378xXsdoa97rj72H86gz1SwHrC6hy2lvMVXsCO_VxOFvPLUovf1xGdzg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Rainbow+Memory%3A+Continual+Learning+with+a+Memory+of+Diverse+Samples&rft.au=Bang%2C+Jihwan&rft.au=Kim%2C+Heesu&rft.au=Yoo%2C+YoungJoon&rft.au=Ha%2C+Jung-Woo&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8214&rft.epage=8223&rft_id=info:doi/10.1109%2FCVPR46437.2021.00812&rft.externalDocID=9577808 |