Photovoltaic Power Forecasting Using Recurrent Neural Network Based On Bayesian Regularization Algorithm
Photovoltaic (PV) is a generator that utilizes solar energy into electrical energy. On-grid photovoltaic is the system can reduce electricity bills, besides that the electricity produced is environmentally friendly and free emission. PV power output intermittent depending on weather conditions. Ther...
Saved in:
| Published in: | 2021 IEEE International Conference in Power Engineering Application (ICPEA) pp. 109 - 114 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
08.03.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Photovoltaic (PV) is a generator that utilizes solar energy into electrical energy. On-grid photovoltaic is the system can reduce electricity bills, besides that the electricity produced is environmentally friendly and free emission. PV power output intermittent depending on weather conditions. Therefore, this research will predict the power output PV one day ahead using Recurrent Neural Network (RNN) method with Bayesian Regularization Algorithm because it can solve problems regarding prediction, classification, and energy management. The measure of accuracy error from the simulation result in this study is calculated using Mean Absolute Percentage Error (MAPE). The PV power forecasting accuracy using RNN method is compared with actual data. The amount of load power that PV cannot fulfill will later be back up by the grid. The prediction of PV power using RNN method with 4 neuron hidden layers and learning rate 0.01 resulted in the best MAPE value of 2,2784 %. Based on the results, PV power forecasting output using the RNN method with historical data can be applied to determine the amount of PV power for day ahead. |
|---|---|
| AbstractList | Photovoltaic (PV) is a generator that utilizes solar energy into electrical energy. On-grid photovoltaic is the system can reduce electricity bills, besides that the electricity produced is environmentally friendly and free emission. PV power output intermittent depending on weather conditions. Therefore, this research will predict the power output PV one day ahead using Recurrent Neural Network (RNN) method with Bayesian Regularization Algorithm because it can solve problems regarding prediction, classification, and energy management. The measure of accuracy error from the simulation result in this study is calculated using Mean Absolute Percentage Error (MAPE). The PV power forecasting accuracy using RNN method is compared with actual data. The amount of load power that PV cannot fulfill will later be back up by the grid. The prediction of PV power using RNN method with 4 neuron hidden layers and learning rate 0.01 resulted in the best MAPE value of 2,2784 %. Based on the results, PV power forecasting output using the RNN method with historical data can be applied to determine the amount of PV power for day ahead. |
| Author | Privadi, Ardvono Budiharto Putri, Vita Lystianingrum Setya Budi, Avian Lukman Kusuma, Vita |
| Author_xml | – sequence: 1 givenname: Vita surname: Kusuma fullname: Kusuma, Vita email: vitakusuma93@gmail.com organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia – sequence: 2 givenname: Ardvono surname: Privadi fullname: Privadi, Ardvono email: priyadi@ee.its.ac.id organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia – sequence: 3 givenname: Avian Lukman surname: Setya Budi fullname: Setya Budi, Avian Lukman email: avianlukmans@gmail.com organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia – sequence: 4 givenname: Vita Lystianingrum surname: Budiharto Putri fullname: Budiharto Putri, Vita Lystianingrum email: vitagrum@gmail.com organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia |
| BookMark | eNotj8tOAjEYhWuiC0WewIV9gcFeprclTkBJiBAja9KZ_kDj0JpOR4JP7xjZnO8sTk7y3aHrEAMg9EjJhFJinhbVejYVVBAyYYTRiSmp0pxfobFRmiqmqRalJLfosD7EHL9jm61v8DqeIOF5TNDYLvuwx5vuL9-h6VOCkPEb9Mm2A_Ippk_8bDtweBWGcobO2zBM931rk_-x2ceAp-0-Jp8Px3t0s7NtB-MLR2gzn31Ur8Vy9bKopsvCM8JzIWoptNNMSkKbUjErDamd5QQYU9YITigMBsIJUysNjjnneMmcNArMjtZ8hB7-fz0AbL-SP9p03l78-S_Rqlae |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPEA51500.2021.9417833 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728185460 1728185467 |
| EndPage | 114 |
| ExternalDocumentID | 9417833 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-5b658d826601c472a690bda30e227a95301e7815d59b78ed2ddd342d697e9f1b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000676289700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:18 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-5b658d826601c472a690bda30e227a95301e7815d59b78ed2ddd342d697e9f1b3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9417833 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-March-8 |
| PublicationDateYYYYMMDD | 2021-03-08 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-March-8 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE International Conference in Power Engineering Application (ICPEA) |
| PublicationTitleAbbrev | ICPEA |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8054968 |
| Snippet | Photovoltaic (PV) is a generator that utilizes solar energy into electrical energy. On-grid photovoltaic is the system can reduce electricity bills, besides... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 109 |
| SubjectTerms | Bayes methods Bayesian Regularization Algorithm Mean Absolute Percentage Error Photovoltaic Photovoltaic systems Power Forecasting Prediction algorithms Recureent Neural Network Recurrent neural networks Simulation Solar energy Training |
| Title | Photovoltaic Power Forecasting Using Recurrent Neural Network Based On Bayesian Regularization Algorithm |
| URI | https://ieeexplore.ieee.org/document/9417833 |
| WOSCitedRecordID | wos000676289700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA3b8OBJZRN_k4NHu6VJ2yTHOTb0Moso7Dbya24wW-k6wf_eL1mZCF48JYRAISH9vpe89z2Ebm2mjdIyjbhdUAAoSRr5Kt8RUdpJabkgTgSzCT6ditlM5i10t9fCOOcC-cz1fTe85dvSbP1V2UAmMReMtVGb82yn1WooWzGRg8dRPh5CeCYEYB-N-83sX7YpIWpMjv73vWPU-5Hf4XwfWE5QyxVdtMyXZV3CzwSwvMG5NzfD3lfTqI1nLuPw9o-f_fW5L7iEfdUNtYYm0LzxPUQri58K6Hw5L5yEqd6Fvmp0mHi4fiurVb1876HXyfhl9BA1NgnRihJWR6mGLMICTABsZRJOFQBebRUjjlKuZApH2HERpzaVmgtnqbWWJdRmkju5iDU7RZ2iLNwZwpB-CZZIooRhidGZ0jy2XqpqIAuj1J2jrl-l-ceuEsa8WaCLv4cv0aHfiMDYEleoU1dbd40OzGe92lQ3Yfu-AZ4rnig |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxFAy1CnpSacVvc_Dottkk2yTHWlparHWRCr2VfNUW6q60W8F_bxKXiuDFU0IILCRk35tk5g0At6altFQiiZiZYQdQaBL5Kt8RksoKYRhHlgezCTYa8clEpBVwt9XCWGsD-cw2fDe85Ztcb_xVWVPQmHFCdsBuQilG32qtkrQVI9EcdNJu2wVohBzww3GjnP_LOCXEjd7h_754BOo_AjyYbkPLMajYrAbm6Twvcvc7cWhew9Tbm0HvrKnl2nOXYXj9h8_-At2XXIK-7oZcuiYQveG9i1cGPmWu82m9dNJN9T70q1KJCdvL13y1KOZvdfDS6447_ag0SogWGJEiSpTLI4wDCg5dacqwdJBXGUmQxZhJkbhDbBmPE5MIxbg12BhDKDYtwayYxYqcgGqWZ_YUQJeAcUIFklwTqlVLKhYbL1bVLg_D2J6Bml-l6ft3LYxpuUDnfw_fgP3--HE4HQ5GDxfgwG9K4G_xS1AtVht7Bfb0R7FYr67DVn4BBTmhbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+in+Power+Engineering+Application+%28ICPEA%29&rft.atitle=Photovoltaic+Power+Forecasting+Using+Recurrent+Neural+Network+Based+On+Bayesian+Regularization+Algorithm&rft.au=Kusuma%2C+Vita&rft.au=Privadi%2C+Ardvono&rft.au=Setya+Budi%2C+Avian+Lukman&rft.au=Budiharto+Putri%2C+Vita+Lystianingrum&rft.date=2021-03-08&rft.pub=IEEE&rft.spage=109&rft.epage=114&rft_id=info:doi/10.1109%2FICPEA51500.2021.9417833&rft.externalDocID=9417833 |