Photovoltaic Power Forecasting Using Recurrent Neural Network Based On Bayesian Regularization Algorithm

Photovoltaic (PV) is a generator that utilizes solar energy into electrical energy. On-grid photovoltaic is the system can reduce electricity bills, besides that the electricity produced is environmentally friendly and free emission. PV power output intermittent depending on weather conditions. Ther...

Full description

Saved in:
Bibliographic Details
Published in:2021 IEEE International Conference in Power Engineering Application (ICPEA) pp. 109 - 114
Main Authors: Kusuma, Vita, Privadi, Ardvono, Setya Budi, Avian Lukman, Budiharto Putri, Vita Lystianingrum
Format: Conference Proceeding
Language:English
Published: IEEE 08.03.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Photovoltaic (PV) is a generator that utilizes solar energy into electrical energy. On-grid photovoltaic is the system can reduce electricity bills, besides that the electricity produced is environmentally friendly and free emission. PV power output intermittent depending on weather conditions. Therefore, this research will predict the power output PV one day ahead using Recurrent Neural Network (RNN) method with Bayesian Regularization Algorithm because it can solve problems regarding prediction, classification, and energy management. The measure of accuracy error from the simulation result in this study is calculated using Mean Absolute Percentage Error (MAPE). The PV power forecasting accuracy using RNN method is compared with actual data. The amount of load power that PV cannot fulfill will later be back up by the grid. The prediction of PV power using RNN method with 4 neuron hidden layers and learning rate 0.01 resulted in the best MAPE value of 2,2784 %. Based on the results, PV power forecasting output using the RNN method with historical data can be applied to determine the amount of PV power for day ahead.
AbstractList Photovoltaic (PV) is a generator that utilizes solar energy into electrical energy. On-grid photovoltaic is the system can reduce electricity bills, besides that the electricity produced is environmentally friendly and free emission. PV power output intermittent depending on weather conditions. Therefore, this research will predict the power output PV one day ahead using Recurrent Neural Network (RNN) method with Bayesian Regularization Algorithm because it can solve problems regarding prediction, classification, and energy management. The measure of accuracy error from the simulation result in this study is calculated using Mean Absolute Percentage Error (MAPE). The PV power forecasting accuracy using RNN method is compared with actual data. The amount of load power that PV cannot fulfill will later be back up by the grid. The prediction of PV power using RNN method with 4 neuron hidden layers and learning rate 0.01 resulted in the best MAPE value of 2,2784 %. Based on the results, PV power forecasting output using the RNN method with historical data can be applied to determine the amount of PV power for day ahead.
Author Privadi, Ardvono
Budiharto Putri, Vita Lystianingrum
Setya Budi, Avian Lukman
Kusuma, Vita
Author_xml – sequence: 1
  givenname: Vita
  surname: Kusuma
  fullname: Kusuma, Vita
  email: vitakusuma93@gmail.com
  organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia
– sequence: 2
  givenname: Ardvono
  surname: Privadi
  fullname: Privadi, Ardvono
  email: priyadi@ee.its.ac.id
  organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia
– sequence: 3
  givenname: Avian Lukman
  surname: Setya Budi
  fullname: Setya Budi, Avian Lukman
  email: avianlukmans@gmail.com
  organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia
– sequence: 4
  givenname: Vita Lystianingrum
  surname: Budiharto Putri
  fullname: Budiharto Putri, Vita Lystianingrum
  email: vitagrum@gmail.com
  organization: Institut Teknologi Sepuluh Nopember,Department of Electrical Engineering,Surabaya,Indonesia
BookMark eNotj8tOAjEYhWuiC0WewIV9gcFeprclTkBJiBAja9KZ_kDj0JpOR4JP7xjZnO8sTk7y3aHrEAMg9EjJhFJinhbVejYVVBAyYYTRiSmp0pxfobFRmiqmqRalJLfosD7EHL9jm61v8DqeIOF5TNDYLvuwx5vuL9-h6VOCkPEb9Mm2A_Ippk_8bDtweBWGcobO2zBM931rk_-x2ceAp-0-Jp8Px3t0s7NtB-MLR2gzn31Ur8Vy9bKopsvCM8JzIWoptNNMSkKbUjErDamd5QQYU9YITigMBsIJUysNjjnneMmcNArMjtZ8hB7-fz0AbL-SP9p03l78-S_Rqlae
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPEA51500.2021.9417833
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728185460
1728185467
EndPage 114
ExternalDocumentID 9417833
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-5b658d826601c472a690bda30e227a95301e7815d59b78ed2ddd342d697e9f1b3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000676289700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:18 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5b658d826601c472a690bda30e227a95301e7815d59b78ed2ddd342d697e9f1b3
PageCount 6
ParticipantIDs ieee_primary_9417833
PublicationCentury 2000
PublicationDate 2021-March-8
PublicationDateYYYYMMDD 2021-03-08
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-March-8
  day: 08
PublicationDecade 2020
PublicationTitle 2021 IEEE International Conference in Power Engineering Application (ICPEA)
PublicationTitleAbbrev ICPEA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8054968
Snippet Photovoltaic (PV) is a generator that utilizes solar energy into electrical energy. On-grid photovoltaic is the system can reduce electricity bills, besides...
SourceID ieee
SourceType Publisher
StartPage 109
SubjectTerms Bayes methods
Bayesian Regularization Algorithm
Mean Absolute Percentage Error
Photovoltaic
Photovoltaic systems
Power Forecasting
Prediction algorithms
Recureent Neural Network
Recurrent neural networks
Simulation
Solar energy
Training
Title Photovoltaic Power Forecasting Using Recurrent Neural Network Based On Bayesian Regularization Algorithm
URI https://ieeexplore.ieee.org/document/9417833
WOSCitedRecordID wos000676289700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA3b8OBJZRN_k4NHu6VJ2yTHOTb0Moso7Dbya24wW-k6wf_eL1mZCF48JYRAISH9vpe89z2Ebm2mjdIyjbhdUAAoSRr5Kt8RUdpJabkgTgSzCT6ditlM5i10t9fCOOcC-cz1fTe85dvSbP1V2UAmMReMtVGb82yn1WooWzGRg8dRPh5CeCYEYB-N-83sX7YpIWpMjv73vWPU-5Hf4XwfWE5QyxVdtMyXZV3CzwSwvMG5NzfD3lfTqI1nLuPw9o-f_fW5L7iEfdUNtYYm0LzxPUQri58K6Hw5L5yEqd6Fvmp0mHi4fiurVb1876HXyfhl9BA1NgnRihJWR6mGLMICTABsZRJOFQBebRUjjlKuZApH2HERpzaVmgtnqbWWJdRmkju5iDU7RZ2iLNwZwpB-CZZIooRhidGZ0jy2XqpqIAuj1J2jrl-l-ceuEsa8WaCLv4cv0aHfiMDYEleoU1dbd40OzGe92lQ3Yfu-AZ4rnig
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxFAy1CnpSacVvc_Dottkk2yTHWlparHWRCr2VfNUW6q60W8F_bxKXiuDFU0IILCRk35tk5g0At6altFQiiZiZYQdQaBL5Kt8RksoKYRhHlgezCTYa8clEpBVwt9XCWGsD-cw2fDe85Ztcb_xVWVPQmHFCdsBuQilG32qtkrQVI9EcdNJu2wVohBzww3GjnP_LOCXEjd7h_754BOo_AjyYbkPLMajYrAbm6Twvcvc7cWhew9Tbm0HvrKnl2nOXYXj9h8_-At2XXIK-7oZcuiYQveG9i1cGPmWu82m9dNJN9T70q1KJCdvL13y1KOZvdfDS6447_ag0SogWGJEiSpTLI4wDCg5dacqwdJBXGUmQxZhJkbhDbBmPE5MIxbg12BhDKDYtwayYxYqcgGqWZ_YUQJeAcUIFklwTqlVLKhYbL1bVLg_D2J6Bml-l6ft3LYxpuUDnfw_fgP3--HE4HQ5GDxfgwG9K4G_xS1AtVht7Bfb0R7FYr67DVn4BBTmhbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+in+Power+Engineering+Application+%28ICPEA%29&rft.atitle=Photovoltaic+Power+Forecasting+Using+Recurrent+Neural+Network+Based+On+Bayesian+Regularization+Algorithm&rft.au=Kusuma%2C+Vita&rft.au=Privadi%2C+Ardvono&rft.au=Setya+Budi%2C+Avian+Lukman&rft.au=Budiharto+Putri%2C+Vita+Lystianingrum&rft.date=2021-03-08&rft.pub=IEEE&rft.spage=109&rft.epage=114&rft_id=info:doi/10.1109%2FICPEA51500.2021.9417833&rft.externalDocID=9417833