Reinforcement Learning-Aided Markov Chain Monte Carlo For Lattice Gaussian Sampling
Sampling from the lattice Gaussian distribution has emerged as a key problem in coding, decoding and cryptography. In this paper, the Gibbs sampling from Markov chain Monte Carlo (MCMC) methods is investigated for lattice Gaussian sampling. Firstly, the error function of random scan Gibbs sampling i...
Uloženo v:
| Vydáno v: | 2021 IEEE Information Theory Workshop (ITW) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.10.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Sampling from the lattice Gaussian distribution has emerged as a key problem in coding, decoding and cryptography. In this paper, the Gibbs sampling from Markov chain Monte Carlo (MCMC) methods is investigated for lattice Gaussian sampling. Firstly, the error function of random scan Gibbs sampling is derived, and we show that it is partially determined by the selection probabilities over the sampling components. Then, in order to minimize the error function for a better sampling performance, a reinforcement learning mechanism is proposed for random scan Gibbs sampling to adaptively update the selection probabilities by learning from the random samples generated along with the chain. Finally, simulation results based on MIMO detection are presented to confirm the performance gain at the expense of limited complexity cost. |
|---|---|
| AbstractList | Sampling from the lattice Gaussian distribution has emerged as a key problem in coding, decoding and cryptography. In this paper, the Gibbs sampling from Markov chain Monte Carlo (MCMC) methods is investigated for lattice Gaussian sampling. Firstly, the error function of random scan Gibbs sampling is derived, and we show that it is partially determined by the selection probabilities over the sampling components. Then, in order to minimize the error function for a better sampling performance, a reinforcement learning mechanism is proposed for random scan Gibbs sampling to adaptively update the selection probabilities by learning from the random samples generated along with the chain. Finally, simulation results based on MIMO detection are presented to confirm the performance gain at the expense of limited complexity cost. |
| Author | Lyu, Shanxiang Xia, Yili Ling, Cong Wang, Zheng |
| Author_xml | – sequence: 1 givenname: Zheng surname: Wang fullname: Wang, Zheng email: z.wang@ieee.org organization: Southeast University,School of Information Science and Engineering,Nanjing,China,210096 – sequence: 2 givenname: Yili surname: Xia fullname: Xia, Yili email: yili_xia@seu.edu.cn organization: Southeast University,School of Information Science and Engineering,Nanjing,China,210096 – sequence: 3 givenname: Shanxiang surname: Lyu fullname: Lyu, Shanxiang email: shanxianglyu@gmail.com organization: Jinan University,College of Cyber Security,Guangzhou,China,510632 – sequence: 4 givenname: Cong surname: Ling fullname: Ling, Cong email: cling@ieee.org organization: Imperial College London,Department of EEE,London,United Kingdom,SW7 2AZ |
| BookMark | eNotj81KAzEYACPowVafQIS8wK75azY5lsXWwhbBVjyWr8kXDe4mJbsKvr2CPc1pBmZGLlNOSMg9ZzXnzD5s9m_KWKlrwQSvreZccXFBZlzrhWKSC3NNdi8YU8jF4YBpoh1CSTG9V8vo0dMtlM_8TdsPiIluc5qQtlD6TFe50A6mKTqka_gaxwiJ7mA49X_yDbkK0I94e-acvK4e9-1T1T2vN-2yq6JgcqoWYJX1TCrQ0npAp6QRCNa5Bq06BgB3RCMAdRMCotbSyeAVA8WNbzzKObn770ZEPJxKHKD8HM6f8hd76U6Y |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ITW48936.2021.9611412 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665403128 9781665403122 |
| EndPage | 5 |
| ExternalDocumentID | 9611412 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province funderid: 10.13039/501100004608 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-5a949d034a639daec4382ea9cc7e94bfaacbe82ae67ffee663c3fd40a418d7de3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794133300035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:52 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-5a949d034a639daec4382ea9cc7e94bfaacbe82ae67ffee663c3fd40a418d7de3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9611412 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Oct.-17 |
| PublicationDateYYYYMMDD | 2021-10-17 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE Information Theory Workshop (ITW) |
| PublicationTitleAbbrev | ITW |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7875327 |
| Snippet | Sampling from the lattice Gaussian distribution has emerged as a key problem in coding, decoding and cryptography. In this paper, the Gibbs sampling from... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Gaussian distribution lattice coding and decoding Lattice Gaussian sampling Lattices Markov chain Monte Carlo Markov processes MIMO detection Monte Carlo methods Performance gain Reinforcement learning Simulation |
| Title | Reinforcement Learning-Aided Markov Chain Monte Carlo For Lattice Gaussian Sampling |
| URI | https://ieeexplore.ieee.org/document/9611412 |
| WOSCitedRecordID | wos000794133300035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRbfc7zVGKVaGWYqv2VmYzs7Ugu7Ld9veb2S4VwYu3EEICL5CZJO-9EeImBUAXvchB5laEJo4dnVDPUYSR8dBet6saS29DNRr1ZjM9bojbnRaGiCryGXW4Wf3lY27W_FTW1bHN3rmk8J5S8VarVYtyPFd3n6bv7KTCvAPf69RjfxVNqWLG4PB_qx2J9o_4To53YeVYNChrickLVRanpnrNk7Ur6sK5WyKhZMFNvpH9D3vNl8_sNyX7UHzmcpAXcgglE9zkA6xXrJiUE2AWebZoi9fB_bT_6NT1EJyl7walE4EONbpBCDatQCDDn3gE2hhFOkws7MbC7APFKk2JbC5hghRDF0KvhwopOBHNLM_oVEjwfF-Br9OEbEIUIWAKoZ0uTVAZQjoTLQZk_rW1vJjXWJz_3X0hDhhzPtI9dSmaZbGmK7FvNuVyVVxX-_QN39-YRA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jCvqksonf5sFHu_UjbZdHGc4NuzHc1L2N29zbOZBWum6_36QrE8EX30IICZxA7k1yzrmM3SUAaKPjW2i4FUIFgSVj6lghoa8c1NftssbSWxSORp3ZTI5r7H6nhSGiknxGLdMs__IxU2vzVNaWgc7eTUnhPV8I196qtSpZjmPL9mD6brxUDPPAdVrV6F9lU8qo0Tv633rHrPkjv-PjXWA5YTVKG2zyQqXJqSrf83jli7qwHpZIyI3kJtvw7oe-6POhcZziXcg_M97Lch5BYShu_AnWK6OZ5BMwPPJ00WSvvcdpt29VFRGspWt7heWDFBJtT4BOLBBImW88AqlUSFLEGnilgXaBgjBJiHQ2obwEhQ3C6WCI5J2yepqldMY4OK4bgiuTmHRK5CNgAkJPl8QYKkI6Zw0DyPxra3oxr7C4-Lv7lh30p8NoHg1Gz5fs0OBvDngnvGL1Il_TNdtXm2K5ym_KPfsG-Aebiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Information+Theory+Workshop+%28ITW%29&rft.atitle=Reinforcement+Learning-Aided+Markov+Chain+Monte+Carlo+For+Lattice+Gaussian+Sampling&rft.au=Wang%2C+Zheng&rft.au=Xia%2C+Yili&rft.au=Lyu%2C+Shanxiang&rft.au=Ling%2C+Cong&rft.date=2021-10-17&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FITW48936.2021.9611412&rft.externalDocID=9611412 |