Edge-Cloud Collaborative Computation Offloading Model Based on Improved Partical Swarm Optimization in MEC

In order to reduce the delay and energy consumption of mobile devices, a computational offload strategy is adopted in mobile edge computing (MEC). At present, most computation offloading strategies only consider two computing resources, mobile devices and MEC servers. However, the computing power of...

Full description

Saved in:
Bibliographic Details
Published in:2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) pp. 959 - 962
Main Authors: Wu, Jinze, Cao, Zhiying, Zhang, Yingjun, Zhang, Xiuguo
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to reduce the delay and energy consumption of mobile devices, a computational offload strategy is adopted in mobile edge computing (MEC). At present, most computation offloading strategies only consider two computing resources, mobile devices and MEC servers. However, the computing power of the cloud server is much larger than that of the MEC server. Tasks with high computational complexity still need to be handed over to the cloud server for processing. This paper proposes an edge-cloud collaborative multi-task computing unloading model that considers both latency and energy cost. Usually the model solving is transformed into a search solution in finite strategy space. In this paper, the nonlinear exponential inertia weight particle swarm optimization (PSO) algorithm is used to get solution. By dynamically adjusting the inertia weight, the algorithm can make up for the convergence premature defect of the standard particle swarm optimization algorithm, and effectively avoid falling into the local optimal solution. Simulation experiments show that the strategy obtained by the model has lower total cost compared with different computation offloading models and strategies.
AbstractList In order to reduce the delay and energy consumption of mobile devices, a computational offload strategy is adopted in mobile edge computing (MEC). At present, most computation offloading strategies only consider two computing resources, mobile devices and MEC servers. However, the computing power of the cloud server is much larger than that of the MEC server. Tasks with high computational complexity still need to be handed over to the cloud server for processing. This paper proposes an edge-cloud collaborative multi-task computing unloading model that considers both latency and energy cost. Usually the model solving is transformed into a search solution in finite strategy space. In this paper, the nonlinear exponential inertia weight particle swarm optimization (PSO) algorithm is used to get solution. By dynamically adjusting the inertia weight, the algorithm can make up for the convergence premature defect of the standard particle swarm optimization algorithm, and effectively avoid falling into the local optimal solution. Simulation experiments show that the strategy obtained by the model has lower total cost compared with different computation offloading models and strategies.
Author Cao, Zhiying
Zhang, Yingjun
Zhang, Xiuguo
Wu, Jinze
Author_xml – sequence: 1
  givenname: Jinze
  surname: Wu
  fullname: Wu, Jinze
  organization: Dalian Maritime University, China
– sequence: 2
  givenname: Zhiying
  surname: Cao
  fullname: Cao, Zhiying
  organization: Dalian Maritime University, China
– sequence: 3
  givenname: Yingjun
  surname: Zhang
  fullname: Zhang, Yingjun
  organization: Dalian Maritime University, China
– sequence: 4
  givenname: Xiuguo
  surname: Zhang
  fullname: Zhang, Xiuguo
  organization: Dalian Maritime University, China
BookMark eNotjFFLwzAUhSPog879AkHyBzqTNG2Sx1mnFjY22N7HXe_tiKRN6bqJ_noL8-l85xzOeWC3bWyJsWcpZlIK91IWm_nbVhtr8pkS0s2EkFrfsKkzVhplpcpsKu_Z1wKPlBQhnpEXMQQ4xB4Gf6HRNd15GDm2fF3XIQL69shXESnwVzgR8rEpm66Pl5E30A--gsC339A3fN0NvvG_17lv-WpRPLK7GsKJpv86Ybv3xa74TJbrj7KYLxOvRDokmdH6oMhmoMAaKXMSipTNx9Q6BJDonECDKdFBGYcCXV5ZbQGRqtykE_Z0vfVEtO9630D_s7fOZFa59A-Q0Vae
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPADS47876.2019.00144
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728125831
1728125839
EndPage 962
ExternalDocumentID 8975829
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-5744b2e85a2a87116e02e28644b89daa1d990d7d3eeb279d0d96c848addec673
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530854900135&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 06 17:59:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5744b2e85a2a87116e02e28644b89daa1d990d7d3eeb279d0d96c848addec673
PageCount 4
ParticipantIDs ieee_primary_8975829
PublicationCentury 2000
PublicationDate 2019-Dec
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec
PublicationDecade 2010
PublicationTitle 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)
PublicationTitleAbbrev PADSW
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.3011835
Snippet In order to reduce the delay and energy consumption of mobile devices, a computational offload strategy is adopted in mobile edge computing (MEC). At present,...
SourceID ieee
SourceType Publisher
StartPage 959
SubjectTerms Collaboration
computation offloading
Computational modeling
Convergence
Costs
delay
Delays
edge-cloud collaborative
Energy consumption
Heuristic algorithms
MEC
Mobile handsets
Particle swarm optimization
Servers
Title Edge-Cloud Collaborative Computation Offloading Model Based on Improved Partical Swarm Optimization in MEC
URI https://ieeexplore.ieee.org/document/8975829
WOSCitedRecordID wos000530854900135&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8OBJZRO_ycGjdW3S5eOodUNBt8KG7DbS5lUmXTvmNv99k7RsCF68hYQQeC-8j-T93g-hWw2aBDrteQIY2AQFvCQTzNOM0hQ4MOZYFN5f-XAoplMZN9DdDgsDAK74DO7t0P3l6zLd2KeyrpAmuiWyiZqc8wqrVYN-A192X6L44Wlsm83Y0oPA9aEMw1-sKc5pDI7-d9wx6uzRdzje-ZUT1ICijT77-gO8KC83Gkd73W0BV7wMTsB4lGV56arisSU5y_GjcVIam5Xq8cCMY3dXVI7H32q1wCNjMhY1FhPPC_zWjzpoMuhPomev5knw5sSna6_HwzAhIHqKKJP_BAyMyIkwkU4ipFYq0MblaK4pmDSaS-1ryVIRCmvaUsbpKWoVZQFnCGfcV9IELTQJIISMKvv3oigBBWD2wDlqWzHNllUnjFktoYu_py_RodVDVfxxhVrr1Qau0UG6Xc-_VjdOfT_BL5-O
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCvqksol38-CjdW3SS_KodWPDXQobsreRNqcy6VqZ2_z7JmnZEHzxLSSEwDnhXJLznQ-hewmSODLxLAY-6AQFrDhlviV9ShMIwPcNi8JbPxgO2XTKoxp62GJhAMAUn8GjHpq_fFkka_1U1mJcRbeE76F9z3WJU6K1KtivY_NWL4yeXsa63YwuPnBMJ0rX_cWbYtxG5_h_B56g5g5_h6OtZzlFNcgb6KMt38EKs2ItcbjT3gZwycxgRIxHaZoVpi4ea5qzDD8rNyWxWimfD9Q4MrdFZHj8LZYLPFJGY1GhMfE8x4N22ESTTnsSdq2KKcGaE5uuLC9w3ZgA8wQRKgNyfFBCJ0zFOjHjUghHKqcjA0lBJdIBl7bkfsJcpo1b4gf0DNXzIodzhNPAFlyFLTR2wIWUCv37IigBAaD2wAVqaDHNPsteGLNKQpd_T9-hw-5k0J_1e8PXK3SkdVKWglyj-mq5hht0kGxW86_lrVHlDznXotU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+25th+International+Conference+on+Parallel+and+Distributed+Systems+%28ICPADS%29&rft.atitle=Edge-Cloud+Collaborative+Computation+Offloading+Model+Based+on+Improved+Partical+Swarm+Optimization+in+MEC&rft.au=Wu%2C+Jinze&rft.au=Cao%2C+Zhiying&rft.au=Zhang%2C+Yingjun&rft.au=Zhang%2C+Xiuguo&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=959&rft.epage=962&rft_id=info:doi/10.1109%2FICPADS47876.2019.00144&rft.externalDocID=8975829