Deep Forest Regression Based on Dynamic State Transition Optimization Algorithm
As a deep algorithm of non-neural network structure, deep forest regression (DFR) can be used to build soft measuring models of difficult-to-measure key parameters. However, as a kind of deep learning, the optimization of hyperparameters has become an inevitable problem in DFR. To solve above proble...
Uloženo v:
| Vydáno v: | Chinese Automation Congress (Online) s. 3786 - 3791 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
06.11.2020
|
| Témata: | |
| ISSN: | 2688-0938 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As a deep algorithm of non-neural network structure, deep forest regression (DFR) can be used to build soft measuring models of difficult-to-measure key parameters. However, as a kind of deep learning, the optimization of hyperparameters has become an inevitable problem in DFR. To solve above problem, an improved dynamic state transition algorithm (DSTA) is used to optimize the hyper-parameters of the model. To achieved more accurate optimization process, the error change rate is used to fine-tuning the state factor during the iteration process, which is further improved with gradient-based refinement. Finally, simulation experiments are performed on the benchmark data set, and satisfactory simulation results show the effectiveness of the proposed approach. |
|---|---|
| AbstractList | As a deep algorithm of non-neural network structure, deep forest regression (DFR) can be used to build soft measuring models of difficult-to-measure key parameters. However, as a kind of deep learning, the optimization of hyperparameters has become an inevitable problem in DFR. To solve above problem, an improved dynamic state transition algorithm (DSTA) is used to optimize the hyper-parameters of the model. To achieved more accurate optimization process, the error change rate is used to fine-tuning the state factor during the iteration process, which is further improved with gradient-based refinement. Finally, simulation experiments are performed on the benchmark data set, and satisfactory simulation results show the effectiveness of the proposed approach. |
| Author | Qiao, Junfei Xia, Heng Tang, Jian |
| Author_xml | – sequence: 1 givenname: Heng surname: Xia fullname: Xia, Heng email: Xia_heng1220@163.com organization: Beijing University of Technology,Faculty of Information Technology,Beijing,China – sequence: 2 givenname: Jian surname: Tang fullname: Tang, Jian email: freeflytang@bjut.edu.cn organization: Beijing University of Technology,Faculty of Information Technology,Beijing,China – sequence: 3 givenname: Junfei surname: Qiao fullname: Qiao, Junfei email: junfeiq@bjut.edu.cn organization: Beijing University of Technology,Faculty of Information Technology,Beijing,China |
| BookMark | eNotj9tKw0AYhFdRsK19AhHyAon_HrN7GVOrQiGg9br8TXbrSnMguzf16Y3aq29mGAZmTq66vrOE3FPIKAXzUBalpFKbjAGDzHCWa-AXZE5zpmmudC4vyYwprVMwXN-QZQhfAMA4FVLAjFQra4dk3Y82xOTNHiYG33fJIwbbJJNYnTpsfZ28R4w22Y7YBR9_G9UQfeu_8c8Ux0M_-vjZ3pJrh8dgl2cuyMf6aVu-pJvq-bUsNqlnwGMqee0QNdurhjtUXHPBJBrDUICjxjRTbnUNuURBc9gzpYRGx5yuEVHUfEHu_ne9tXY3jL7F8bQ7_-c_yB1Rmw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CAC51589.2020.9327803 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry |
| EISBN | 1728176875 9781728176871 |
| EISSN | 2688-0938 |
| EndPage | 3791 |
| ExternalDocumentID | 9327803 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-53cfaa82b6d3fa6383425a992a40f199d6d3e8c075a4170b26648af2f8caaa4c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678697003161&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 05:52:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-53cfaa82b6d3fa6383425a992a40f199d6d3e8c075a4170b26648af2f8caaa4c3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9327803 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov.-6 |
| PublicationDateYYYYMMDD | 2020-11-06 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Automation Congress (Online) |
| PublicationTitleAbbrev | CAC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002314540 |
| Score | 1.7462375 |
| Snippet | As a deep algorithm of non-neural network structure, deep forest regression (DFR) can be used to build soft measuring models of difficult-to-measure key... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3786 |
| SubjectTerms | Data models deep forest regression dynamic state transition algorithm Forestry Heuristic algorithms hyper-parameters optimization Optimization Stochastic processes Support vector machines Training |
| Title | Deep Forest Regression Based on Dynamic State Transition Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/9327803 |
| WOSCitedRecordID | wos000678697003161&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawMhFJQ0lNJTP5LSbzz0WJNd3Y16TJOGHkoSSltyC64-00CyCemmv7_qLimFXnpTQYQnOoO-eYPQXSyNI_3KEJXFjCQ8syRTLCGSaU0lSKBBx_3-zIdDMZnIcQ3d77QwABCSz6Dlm-Ev36z01j-VtR3X4MKX9tzjvFNqtXbvKY6n-GJylUgnjmS71-05sBZejUKjVjX3l4lKwJDB0f9WP0bNHzEeHu9g5gTVID9FB95S0_u0NdCoD7DGZR-_wKxMbM3xg8Mng12jX5rO48ArcQCnkKeFR-66WFY6TNxdzFabefGxbKK3weNr74lUNglkTiNWkJRpq5SgWccwq9x5Yu4cKimpSiIbS2ncOAjtuIFKYh5lDpLd7lhqhVZKJZqdoXq-yuEc4ciRIaO49ULzhKepsJqmxlrNZAQiTS9Qw8dlui4rYUyrkFz-PXyFDn3og3Kvc43qxWYLN2hffxXzz81t2L5vuMubpQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFG0IGnXlA4xvu3DpQKftMO0SQYIRgRg07EinDyCRgeDg99t2JhgTN-7aJk2T3rTnpL3nHgDuQq4s6RcqEElIAhonJkgEoQEnUmKuucZex_3ei_t9Nh7zYQncb7UwWmuffKZrrun_8tVSbtxTWd1yjZi50p47EaUY5Wqt7YuKZSqunFwh0wkRr7eaLQvXzOlRMKoVs3_ZqHgU6Rz-b_0jUP2R48HhFmiOQUmnJ2DPmWo6p7YKGLS1XsG8D1_1NE9tTeGDRSgFbaOd285DzyyhhyefqQUH9sJYFEpM2PyYLtfzbLaogrfO46jVDQqjhGCOEcmCiEgjBMNJQxEj7Iki9iQKzrGgyIScKzuumbTsQNAwRokFZRsfgw2TQggqySkop8tUnwGILB1SIjZOak7jKGJG4kgZIwlHmkXROai4fZms8loYk2JLLv4evgX73dFLb9J76j9fggMXBq_ja1yBcrbe6GuwK7-y-ef6xofyGwIlnuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Automation+Congress+%28Online%29&rft.atitle=Deep+Forest+Regression+Based+on+Dynamic+State+Transition+Optimization+Algorithm&rft.au=Xia%2C+Heng&rft.au=Tang%2C+Jian&rft.au=Qiao%2C+Junfei&rft.date=2020-11-06&rft.pub=IEEE&rft.eissn=2688-0938&rft.spage=3786&rft.epage=3791&rft_id=info:doi/10.1109%2FCAC51589.2020.9327803&rft.externalDocID=9327803 |