Symbol-Level Precoding Design for Intelligent Reflecting Surface Assisted Multi-User MIMO Systems
Intelligent reflecting surface (IRS)has emerged as a promising solution to enhance wireless information transmissions by adaptively controlling prorogation environment. Recently, the brand-new concept of utilizing IRS to implement a passive transmitter attracts researchers' attention since it p...
Uložené v:
| Vydané v: | International Conference on Wireless Communications and Signal Processing s. 1 - 6 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2019
|
| Predmet: | |
| ISSN: | 2472-7628 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Intelligent reflecting surface (IRS)has emerged as a promising solution to enhance wireless information transmissions by adaptively controlling prorogation environment. Recently, the brand-new concept of utilizing IRS to implement a passive transmitter attracts researchers' attention since it potentially realizes low-complexity and hardware-efficient transmitters of multiple-input single/multiple-output (MISO/MIMO)systems. In this paper we investigate the problem of precoder design for a low-resolution IRS-based transmitter to implement multi-user MISO/MIMO wireless communications. Particularly, the IRS modulates information symbols by varying the phases of its reflecting elements and transmits them to K single-antenna or multi-antenna users. We first aim to design the symbol-level precoder for IRS to realize the modulation and minimize the maximum symbol-error-rate (SER)of single-antenna receivers. In order to tackle this NP-hard problem, we first relax the low-resolution phase-shift constraint and solve this problem by Riemannian conjugate gradient (RCG)algorithm. Then, the low-resolution symbol-level precoding vector is obtained by direct quantization. Considering the large quantization error for 1-bit resolution case, the branch-and-bound method is utilized to solve the 1-bit resolution symbol-level precoding vector. For multiantenna receivers, we propose to iteratively design the symbol-level precoder and combiner by decomposing the original large-scale optimization problem into several sub-problems. Simulation results validate the effectiveness of our proposed algorithms. |
|---|---|
| ISSN: | 2472-7628 |
| DOI: | 10.1109/WCSP.2019.8928065 |