Deformable ConvNets V2: More Deformable, Better Results
The superior performance of Deformable Convolutional Networks arises from its ability to adapt to the geometric variations of objects. Through an examination of its adaptive behavior, we observe that while the spatial support for its neural features conforms more closely than regular ConvNets to obj...
Uloženo v:
| Vydáno v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 9300 - 9308 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2019
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The superior performance of Deformable Convolutional Networks arises from its ability to adapt to the geometric variations of objects. Through an examination of its adaptive behavior, we observe that while the spatial support for its neural features conforms more closely than regular ConvNets to object structure, this support may nevertheless extend well beyond the region of interest, causing features to be influenced by irrelevant image content. To address this problem, we present a reformulation of Deformable ConvNets that improves its ability to focus on pertinent image regions, through increased modeling power and stronger training. The modeling power is enhanced through a more comprehensive integration of deformable convolution within the network, and by introducing a modulation mechanism that expands the scope of deformation modeling. To effectively harness this enriched modeling capability, we guide network training via a proposed feature mimicking scheme that helps the network to learn features that reflect the object focus and classification power of R-CNN features. With the proposed contributions, this new version of Deformable ConvNets yields significant performance gains over the original model and produces leading results on the COCO benchmark for object detection and instance segmentation. |
|---|---|
| AbstractList | The superior performance of Deformable Convolutional Networks arises from its ability to adapt to the geometric variations of objects. Through an examination of its adaptive behavior, we observe that while the spatial support for its neural features conforms more closely than regular ConvNets to object structure, this support may nevertheless extend well beyond the region of interest, causing features to be influenced by irrelevant image content. To address this problem, we present a reformulation of Deformable ConvNets that improves its ability to focus on pertinent image regions, through increased modeling power and stronger training. The modeling power is enhanced through a more comprehensive integration of deformable convolution within the network, and by introducing a modulation mechanism that expands the scope of deformation modeling. To effectively harness this enriched modeling capability, we guide network training via a proposed feature mimicking scheme that helps the network to learn features that reflect the object focus and classification power of R-CNN features. With the proposed contributions, this new version of Deformable ConvNets yields significant performance gains over the original model and produces leading results on the COCO benchmark for object detection and instance segmentation. |
| Author | Zhu, Xizhou Dai, Jifeng Lin, Stephen Hu, Han |
| Author_xml | – sequence: 1 givenname: Xizhou surname: Zhu fullname: Zhu, Xizhou organization: Univ. of Science and Technology of China – sequence: 2 givenname: Han surname: Hu fullname: Hu, Han organization: Microsoft Research Asia – sequence: 3 givenname: Stephen surname: Lin fullname: Lin, Stephen organization: Microsoft Research – sequence: 4 givenname: Jifeng surname: Dai fullname: Dai, Jifeng organization: Microsoft Research Asia |
| BookMark | eNpFj8tKxEAQRVtRcByzduGmP8DErqpOutudxieMDwad7ZCJVRDJJJKOgn9vQMHVhXvgcu6h2uv6jpU6BpMBmHBWrp6XGRoImTEhpx2VBOfBoQfCQH5XzcAUlBYBwoFKYnw3xhACFMHPlLti6YdttWlZl3339chj1Cs81w_9wPofnupLHkce9JLjZzvGI7UvVRs5-cu5er25finv0sXT7X15sUgbNDSmOQDWtq7YsiAKbqyVqchFKgz4xp7y3AqIgK9dYUnEF27y82RdJYQ0Vye_uw0zrz-GZlsN32s__XTB0Q9FhUb2 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2019.00953 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728132938 1728132932 |
| EISSN | 1063-6919 |
| EndPage | 9308 |
| ExternalDocumentID | 8953797 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-5112c4cae4ef22f2b44f2c45ffa292de83554f1ff18c7643ff8670008347af323 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542649302094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 07:44:55 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-5112c4cae4ef22f2b44f2c45ffa292de83554f1ff18c7643ff8670008347af323 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_8953797 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-June |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.6645617 |
| Snippet | The superior performance of Deformable Convolutional Networks arises from its ability to adapt to the geometric variations of objects. Through an examination... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 9300 |
| SubjectTerms | Categorization Convolution Convolutional neural networks Deformable models Deformation Instance segmentation Modulation Object detection Pattern recognition Performance gain Recognition: Detection Retrieval Training |
| Title | Deformable ConvNets V2: More Deformable, Better Results |
| URI | https://ieeexplore.ieee.org/document/8953797 |
| WOSCitedRecordID | wos000542649302094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb8IwDLUA7bAT22Dat3LYkY6StqTZcWxohw0htCFuqE1tCQkBoi2_f3GoYIdddoscRZEcWX52_GyARws6M6PI2jcxJcfX5PFvm5dKFZkwyozM3Et_qNEons30uAadAxcGEV3xGT7x0v3lZ2tTcqqsG-soUFrVoa6U2nO1DvmUwEYyfR1X3Xt6vu4OpuMJ125xQ0rNw49_jU9x3mPY_N-9Z9A-0vDE-OBgzqGGqwtoVrhRVFaZt0C9ooOe6RKFPbobYZGLqXwWn_YicdzsiBdH3hETzMtlkbfhe_j2NXj3qoEI3kL6QeExODKhSTBEkpJkGoZkBRFRIrXMMGbwQD2iXmyUhRpEMbNwLMoKVUKBDC6hsVqv8ApEYi056pOfyMwGhNKkNiDV3DvGHoySNLiGFuthvtn3vJhXKrj5W3wLp6zofQnVHTSKbYn3cGJ2xSLfPriH-gEfrJKG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6sLbQn22rpuzn06NbdbGI2PfYhluoiYsWb7GYzIIgWd_X3N4mL9tBLb2FCCEwY5pvJfDMAjwZ0ZkqgsW-0lBxfomd_27yUCq4YzxTN3Ev3RBxHk4kcVKC548JorV3xmX6yS_eXny3V2qbKWpHkoZDiAA45YzTYsrV2GZXQxDJtGZX9ewJftl7Hg6Gt3rItKaUdf_xrgIrzH53a_24-hcaeiEcGOxdzBhW9OIdaiRxJaZd5HcSbduAznWtijm5iXeRkTJ9J31xE9ptN8uLoO2So8_W8yBvw1XkfvXa9ciSCN6N-WHgWHimmEs00Uoo0ZQyNgCMmVNJMRxY-YIAYREoYsIEYWR6OwVlMJBjS8AKqi-VCXwJJjC3zNvoJzUxISFVqQlJpu8eYgzxJwyuoWz1Mv7ddL6alCq7_Fj_AcXfU7017H_HnDZxYpW8Lqm6hWqzW-g6O1KaY5at792g_8jKVzQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Deformable+ConvNets+V2%3A+More+Deformable%2C+Better+Results&rft.au=Zhu%2C+Xizhou&rft.au=Hu%2C+Han&rft.au=Lin%2C+Stephen&rft.au=Dai%2C+Jifeng&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=9300&rft.epage=9308&rft_id=info:doi/10.1109%2FCVPR.2019.00953&rft.externalDocID=8953797 |