Machine learning based SpO2 prediction from PPG signal's characteristics features
Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's che...
Uloženo v:
| Vydáno v: | 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.06.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's chest that contains a Photoplethysmogram Waveforms (PPG) sensor, one can obtain the SpO2 parameter. Our interest in the process of the SmartPatch prototype development is to investigate the monitoring of a blood oxygen saturation level by using the embedded PPG sensor. We explore acquiring the Sp02 by extracting the set of features from the PPG signal utilizing two Python toolkits, HeartPy and Neurokit, in order to model the Machine learning predictors, using multiple regressors. The PPG signal is preprocessed by various filtering techniques to remove low/high frequency noise. The model was trained and tested using the clinical data collected from 52 subjects with SpO2 levels varying from 83 - 100%. The best experimental results - MAE (1.45), MSE (3.85), RMSE (1.96) and RMSLE (0.02) scores are achieved with the Random Forest regressor in the experiment with 7 features extracted from the both toolkits. |
|---|---|
| AbstractList | Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's chest that contains a Photoplethysmogram Waveforms (PPG) sensor, one can obtain the SpO2 parameter. Our interest in the process of the SmartPatch prototype development is to investigate the monitoring of a blood oxygen saturation level by using the embedded PPG sensor. We explore acquiring the Sp02 by extracting the set of features from the PPG signal utilizing two Python toolkits, HeartPy and Neurokit, in order to model the Machine learning predictors, using multiple regressors. The PPG signal is preprocessed by various filtering techniques to remove low/high frequency noise. The model was trained and tested using the clinical data collected from 52 subjects with SpO2 levels varying from 83 - 100%. The best experimental results - MAE (1.45), MSE (3.85), RMSE (1.96) and RMSLE (0.02) scores are achieved with the Random Forest regressor in the experiment with 7 features extracted from the both toolkits. |
| Author | Koteska, Bojana Lehocki, Fedor Bogdanova, Ana Madevska Mitrova, Hristina |
| Author_xml | – sequence: 1 givenname: Bojana surname: Koteska fullname: Koteska, Bojana email: bojana.koteska@finki.ukim.mk organization: Ss. Cyril and Methodius University,Faculty of Computer Science and Engineering,Skopje,North Macedonia – sequence: 2 givenname: Hristina surname: Mitrova fullname: Mitrova, Hristina email: hristina.mitrova@students.finki.ukim.mk organization: Ss. Cyril and Methodius University,Faculty of Computer Science and Engineering,Skopje,North Macedonia – sequence: 3 givenname: Ana Madevska surname: Bogdanova fullname: Bogdanova, Ana Madevska email: ana.madevska.bogdanova@students.finki.ukim.mk organization: Ss. Cyril and Methodius University,Faculty of Computer Science and Engineering,Skopje,North Macedonia – sequence: 4 givenname: Fedor surname: Lehocki fullname: Lehocki, Fedor email: fedor.lehocki@stuba.sk organization: Institute of Measurement Science, Slovak Academy of Sciences,Bratislava,Slovakia |
| BookMark | eNotj0FLwzAYhiPoQed-gQdz87TapEma7ziGTmFlE_U8viZft0CXlqQe_PcO3OmFh4cH3jt2HYdIjD2KshCihOeGGlpqBaAKWUpZgNVGgb1ic6itMEYrKwHsLfto0B1DJN4TphjigbeYyfPPcSv5mMgHN4Uh8i4NJ77brXkOh4j9U-buiAndRCnkKbjMO8LpJ1G-Zzcd9pnml52x79eXr9XbYrNdv6-Wm0WQZTUtFHlondd1K7Ry1nmnjBFSa6o6aA1Ya-iMbCdLrFtACU4gnVVS4Cvvqxl7-O8GItqPKZww_e4vR6s_TqtO8w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MeMeA54994.2022.9856498 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665482998 1665482990 |
| EndPage | 6 |
| ExternalDocumentID | 9856498 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-4ed9bcd57b154c8cdc4661255e3f9b69886ec468f20a7b9a29c1ae54ce49d3dd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861225100092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:10 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-4ed9bcd57b154c8cdc4661255e3f9b69886ec468f20a7b9a29c1ae54ce49d3dd3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9856498 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June-22 |
| PublicationDateYYYYMMDD | 2022-06-22 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA) |
| PublicationTitleAbbrev | MEMEA |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.82685 |
| Snippet | Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Decision making Feature extraction Filtering machine learning Neural networks oxygen saturation photoplethysmogram data Pipelines Predictive models Prototypes signal processing |
| Title | Machine learning based SpO2 prediction from PPG signal's characteristics features |
| URI | https://ieeexplore.ieee.org/document/9856498 |
| WOSCitedRecordID | wos000861225100092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07SwNBEF6SYGGlkohvthBs3ORub7OPUsRoYeKJCunC3s6cBCQJucTf783liARs7JZhYOGbYl7fzDB2nefojQIQcYgSoXzihctiJ8h5hcwl2vpqz-yzGY3seOzSBrvdzsIgYkU-wy49q14-zMOaSmU9Z_taOdtkTWP0ZlarpmzFkesNcYh3lO5QqUTKbq29czal8hqDg__9d8g6v-N3PN06liPWwFmbvQ4r2iPy-s7DJycHBPxt8SL5Ykn9FsKY07wIT9NHTswM_3VT8LC7k5mXuFHboOiwj8HD-_2TqO8hiKmMkpVQCC4L0DdZGfcEGyAoTQFKH5PcZdpZq7EU2VxG3mTOSxdij6UqKgcJQHLMWrP5DE8YBx0cRJ7WGoECC77Mimxpn5BHaFBGp6xNcEwWm5UXkxqJs7_F52yfECcGlZQXrLVarvGS7YXv1bRYXlV2-gHenZdI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qFfSk0opv9yB4Me1ms0l2jyLWik2NWKG3stmZSEHa0oe_30wMlYIXb8swsPDNYV7fzDB2nedoYwXg-U4EnrKB9UzmG4-cl8tMEGlb7pntxf2-Hg5NWmO361kYRCzJZ9iiZ9nLh6lbUamsbXQYKaO32HaolBQ_01oVacsXpp1ggneU8FCxRMpWpb9xOKX0G539__14wJq_A3g8XbuWQ1bDSYO9JiXxEXl16eGDkwsC_jZ7kXw2p44LocxpYoSn6SMnbob9vFlwt7mVmRfIUeNg0WTvnYfBfderLiJ4YymCpacQTOYgjLMi8nHagVMRhSghBrnJIqN1hIVI51LYODNWGudbLFRRGQgAgiNWn0wneMw4RM6AsLTYCBRosEVepAsLuVxgjFKcsAbBMZr9LL0YVUic_i2-YrvdQdIb9Z76z2dsj9AnPpWU56y-nK_wgu24r-V4Mb8sbfYN6x2ajw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Symposium+on+Medical+Measurements+and+Applications+%28MeMeA%29&rft.atitle=Machine+learning+based+SpO2+prediction+from+PPG+signal%27s+characteristics+features&rft.au=Koteska%2C+Bojana&rft.au=Mitrova%2C+Hristina&rft.au=Bogdanova%2C+Ana+Madevska&rft.au=Lehocki%2C+Fedor&rft.date=2022-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMeMeA54994.2022.9856498&rft.externalDocID=9856498 |