What Do Single-View 3D Reconstruction Networks Learn?
Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing techniques are united by the idea of having an encoder-decoder network that performs non-trivial reasoning about the 3D structure of the output s...
Uloženo v:
| Vydáno v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 3400 - 3409 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2019
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing techniques are united by the idea of having an encoder-decoder network that performs non-trivial reasoning about the 3D structure of the output space. In this work, we set up two alternative approaches that perform image classification and retrieval respectively. These simple baselines yield better results than state-of-the-art methods, both qualitatively and quantitatively. We show that encoder-decoder methods are statistically indistinguishable from these baselines, thus indicating that the current state of the art in single-view object reconstruction does not actually perform reconstruction but image classification. We identify aspects of popular experimental procedures that elicit this behavior and discuss ways to improve the current state of research. |
|---|---|
| AbstractList | Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing techniques are united by the idea of having an encoder-decoder network that performs non-trivial reasoning about the 3D structure of the output space. In this work, we set up two alternative approaches that perform image classification and retrieval respectively. These simple baselines yield better results than state-of-the-art methods, both qualitatively and quantitatively. We show that encoder-decoder methods are statistically indistinguishable from these baselines, thus indicating that the current state of the art in single-view object reconstruction does not actually perform reconstruction but image classification. We identify aspects of popular experimental procedures that elicit this behavior and discuss ways to improve the current state of research. |
| Author | Richter, Stephan R. Brox, Thomas Ranftl, Rene Li, Zhuwen Tatarchenko, Maxim Koltun, Vladlen |
| Author_xml | – sequence: 1 givenname: Maxim surname: Tatarchenko fullname: Tatarchenko, Maxim organization: Freiburg – sequence: 2 givenname: Stephan R. surname: Richter fullname: Richter, Stephan R. organization: Intel Labs – sequence: 3 givenname: Rene surname: Ranftl fullname: Ranftl, Rene organization: Intel Labs – sequence: 4 givenname: Zhuwen surname: Li fullname: Li, Zhuwen organization: Pony AI – sequence: 5 givenname: Vladlen surname: Koltun fullname: Koltun, Vladlen organization: Intel Labs – sequence: 6 givenname: Thomas surname: Brox fullname: Brox, Thomas organization: Univ. of Freiburg |
| BookMark | eNotjstKw0AUQEdRsNasXbiZH0idO3cmmbsSSesDgkrVuizzikbrRJJI8e8t6OpsDodzzA5SlyJjpyBmAILOq9XDciYF0EwI1HKPZVQaKKUBlIRmn01AFJgXBHTEsmF4FztPAhRkJky_vNmRzzv-2KbXTcxXbdxynPNl9F0axv7bj22X-F0ct13_MfA62j5dnLDDxm6GmP1zyp6vFk_VTV7fX99Wl3XeSoFjrozDQB618sEh2N1uSdigDEa7gI2RpY_CNqoM2jpltHDCEQbpjWwUFThlZ3_dNsa4_urbT9v_rA1pBRLwF6IaRnM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2019.00352 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728132938 1728132932 |
| EISSN | 1063-6919 |
| EndPage | 3409 |
| ExternalDocumentID | 8954121 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-48b3d9c354cdb31a110793f32d85bd3f827ce0af47d5ab4850b0b93d2c82f4963 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 330 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529484003059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Sep 10 07:40:26 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-48b3d9c354cdb31a110793f32d85bd3f827ce0af47d5ab4850b0b93d2c82f4963 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8954121 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-June |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.6108272 |
| Snippet | Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3400 |
| SubjectTerms | 3D from Single Image Cognition Computer vision Convolutional neural networks Coordinate measuring machines Deep Learning Image classification Image reconstruction Pattern recognition Three-dimensional displays |
| Title | What Do Single-View 3D Reconstruction Networks Learn? |
| URI | https://ieeexplore.ieee.org/document/8954121 |
| WOSCitedRecordID | wos000529484003059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS0MxEB5q8eDJpRV3cvBobN7LfvLQWjxIKS6lt_KyQUFasVX_vkneo_XgxVsICSEThsmXzPcNwHUhAvEmGCwqrTATxON4y-BYB2tLUTErdSYKP8rRSE2netyCmw0Xxnufk8_8bWrmv3y3tJ_pqaynNGdFYo3vSClrrtbmPYVGJCO0atR7CqJ7_cn4KeVuJUHKTCz6VT4lR4_h_v_WPYDuloaHxpsAcwgtvziC_ebeiBqvXHWAJ_1tNFii5zjszePJ3H8jOkAJWm4FYtGozvheoaypeteF1-H9S_8BN-UQ8LwkdI2ZMtRpSzmzztCiSshN00BLp7hxNKhSWk-qwKTjlWGKE0OMpq60qgwsOtoxtBfLhT8BxEOIMMUrG6fE6CS11TYVfonYQnhh1Cl0khVm77XixawxwNnf3eewl8xcJ1BdQDvuy1_Crv1az1cfV_mYfgD-FpKX |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ001URPVVvjtxw8imUX2IWTh9amxrpptDa9NQsLSZOmNbbq3xfYTevBizdCIIQhk-HBvDcAN1FiiVFW4SSXArOEGOxuGRxLq3Wc5EynMhCFB2mWiclEDmtwu-HCGGNC8pm5883wl18s9ad_KmsLyVnkWeM7nLE4KtlamxcV6rBMIkWl3xMR2e6Mhy8-e8tLUgZq0a8CKiF-9Br_W_kAWlsiHhpuQswh1MziCBrVzRFVfrlqAvcK3Ki7RK9u2Nzg8cx8I9pFHlxuJWJRVuZ8r1BQVb1vwVvvYdTp46ogAp7FhK4xE4oWUlPOdKFolHvsJqmlcSG4KqgVcaoNyS1LC54rJjhRRElaxFrEljlXO4b6YrkwJ4C4tQ6oGKHdFBefUqml9qVfHLpITKLEKTS9FabvpebFtDLA2d_d17DXHz0PpoPH7Okc9r3Jy3SqC6i7PZpL2NVf69nq4yoc2Q_R0ZXe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=What+Do+Single-View+3D+Reconstruction+Networks+Learn%3F&rft.au=Tatarchenko%2C+Maxim&rft.au=Richter%2C+Stephan+R.&rft.au=Ranftl%2C+Rene&rft.au=Li%2C+Zhuwen&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3400&rft.epage=3409&rft_id=info:doi/10.1109%2FCVPR.2019.00352&rft.externalDocID=8954121 |