Combined Generation of Electrocardiogram and Cardiac Anatomy Models Using Multi-Modal Variational Autoencoders
Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physi...
Saved in:
| Published in: | Proceedings (International Symposium on Biomedical Imaging) pp. 1 - 4 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
28.03.2022
|
| Subjects: | |
| ISSN: | 1945-8452 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physiology, their complex interconnections have rarely been explored together. In this work, we propose a novel multi-modal variational autoencoder (VAE) capable of processing combined physiology and bitemporal anatomy information in the form of electrocardiograms (ECG) and 3D biventricular point clouds. Our method achieves high reconstruction accuracy on a UK Biobank dataset with Chamfer distances between predicted and input anatomies below the underlying image resolution and the ECG reconstructions outperforming a state-of-the-art benchmark approach specialized in ECG generation. We also evaluate its generative ability and find comparable populations of generated and gold standard anatomies, ECGs, and combined anatomy-ECG data in terms of common clinical metrics and maximum mean discrepancies. |
|---|---|
| AbstractList | Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physiology, their complex interconnections have rarely been explored together. In this work, we propose a novel multi-modal variational autoencoder (VAE) capable of processing combined physiology and bitemporal anatomy information in the form of electrocardiograms (ECG) and 3D biventricular point clouds. Our method achieves high reconstruction accuracy on a UK Biobank dataset with Chamfer distances between predicted and input anatomies below the underlying image resolution and the ECG reconstructions outperforming a state-of-the-art benchmark approach specialized in ECG generation. We also evaluate its generative ability and find comparable populations of generated and gold standard anatomies, ECGs, and combined anatomy-ECG data in terms of common clinical metrics and maximum mean discrepancies. |
| Author | Sang, Yuling Beetz, Marcel Grau, Vicente Banerjee, Abhirup |
| Author_xml | – sequence: 1 givenname: Marcel surname: Beetz fullname: Beetz, Marcel organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK – sequence: 2 givenname: Abhirup surname: Banerjee fullname: Banerjee, Abhirup organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK – sequence: 3 givenname: Yuling surname: Sang fullname: Sang, Yuling organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK – sequence: 4 givenname: Vicente surname: Grau fullname: Grau, Vicente organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK |
| BookMark | eNotkM1OwzAQhA0Cibb0CZCQXyDFv018LFEpkVpxgHKtNs6mMkps5KSHvj0GupedGa1G-nZKbnzwSMgjZwvOmXmq3p8rLQphFoIJsTD5kmvDrsiUL5daCSOkuCYTbpTOCqXFHZkPwxdLkyslmZoQX4a-dh4bukGPEUYXPA0tXXdoxxgsxMaFY4Segm9o-WvB0pWHMfRnugsNdgPdD84f6e7UjS5LEXT0E6L760p6dRoDeptO43BPblvoBpxf9ozsX9Yf5Wu2fdtU5WqbOcHkmKkiN1JziwpZwRIpilq2STJs2iaXxticGyZFrTnw3NSQcA3UFo0F1Uo5Iw__vQ4RD9_R9RDPh8t75A9Du1zp |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISBI52829.2022.9761590 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665429232 9781665429238 |
| EISSN | 1945-8452 |
| EndPage | 4 |
| ExternalDocumentID | 9761590 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Heart Foundation funderid: 10.13039/100002129 – fundername: European Commission funderid: 10.13039/501100000780 |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i203t-4879351ce4e080110e2b3f0800edfd7399c719032b51a179ba6659abce9ca4f33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836243800189&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Fri Jul 18 03:48:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-4879351ce4e080110e2b3f0800edfd7399c719032b51a179ba6659abce9ca4f33 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9761590 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-March-28 |
| PublicationDateYYYYMMDD | 2022-03-28 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-March-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
| PublicationTitleAbbrev | ISBI |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 2.3035269 |
| Snippet | Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | 3D Cardiac Anatomy Generation Biological system modeling Combined Anatomy and Electrophysiology Modeling ECG Synthesis Electrocardiography Geometric Deep Learning Measurement Multi-Modal VAE Physiology Point cloud compression Sociology Three-dimensional displays |
| Title | Combined Generation of Electrocardiogram and Cardiac Anatomy Models Using Multi-Modal Variational Autoencoders |
| URI | https://ieeexplore.ieee.org/document/9761590 |
| WOSCitedRecordID | wos000836243800189&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCLj1Z8k4NH03Y3m83usZYWC1IKaumt5DELhbor7Vbw3zvJLlXBi7cQCAuTHWa-yffNEHIXW0D3U4Ih9nAARRmmFcSMc6fTDKQOfJ-C2ZOcTJL5PJ02yP1OCwMAnnwGHbf0b_m2MFtXKuti6MToiwB9T8q40mrt6ikYCiOE5rUIOOil3fHzw1i4h0JEgWHYqQ__mqLig8jo6H-fPybtbzUene7izAlpQH5KDn80EmyRHN0aIS5YWrWRdtamRUaH1ZAb40mnjodFVW7pwP8VhvZzRNxvn9TNQ1ttqGcPUK_IZbilVnSGQLouFtL-tixc00tHfG6T19HwZfDI6kkKbBn2eMkQlaRcBAYiwAwRrQOh5plLFsFmVmKSYiRmBjzUIlDoolrFsUiVNpAaFWWcn5FmXuRwTqgSumchzmJtRGQCSIwGMFKDlRAkib4gLWe5xXvVLGNRG-3y7-0rcuAux5G6wuSaNMv1Fm7Ivvkol5v1rb_hL8VpqRM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KCurFRyu-3YNH0ybZbB7HWlparKVgLb2VfUygUBNpU8F_7-wmVAUv3paFhTCbYeab_b4ZQu5DDeh-gjuIPQxAEcqRAkKHMaPT9CLp2T4F02E0GsWzWTKukYetFgYALPkMmmZp3_J1rjamVNbC0InRFwH6Lg8C3y3VWtuKCgbDAMF5JQP23KQ1eHkccPNUiDjQ95vV8V9zVGwY6R397wOOSeNbj0fH20hzQmqQnZLDH60E6yRDx0aQC5qWjaSNvWme0m455kZZ2qlhYlGRadqx_4Wi7Qwx99snNRPRlmtq-QPUanId3BJLOkUoXZULaXtT5KbtpaE-N8hrrzvp9J1qloKz8F1WOIhLEsY9BQFgjojWAV-y1KSLoFMdYZqiIswNmC-5J9BJpQhDngipIFEiSBk7IztZnsE5oYJLV0OYhlLxQHkQKwmgIgk6Ai-O5QWpG8vN38t2GfPKaJd_b9-R_f7keTgfDkZPV-TAXJShePnxNdkpVhu4IXvqo1isV7f2tr8AutasWg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Combined+Generation+of+Electrocardiogram+and+Cardiac+Anatomy+Models+Using+Multi-Modal+Variational+Autoencoders&rft.au=Beetz%2C+Marcel&rft.au=Banerjee%2C+Abhirup&rft.au=Sang%2C+Yuling&rft.au=Grau%2C+Vicente&rft.date=2022-03-28&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI52829.2022.9761590&rft.externalDocID=9761590 |