Combined Generation of Electrocardiogram and Cardiac Anatomy Models Using Multi-Modal Variational Autoencoders

Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings (International Symposium on Biomedical Imaging) pp. 1 - 4
Main Authors: Beetz, Marcel, Banerjee, Abhirup, Sang, Yuling, Grau, Vicente
Format: Conference Proceeding
Language:English
Published: IEEE 28.03.2022
Subjects:
ISSN:1945-8452
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physiology, their complex interconnections have rarely been explored together. In this work, we propose a novel multi-modal variational autoencoder (VAE) capable of processing combined physiology and bitemporal anatomy information in the form of electrocardiograms (ECG) and 3D biventricular point clouds. Our method achieves high reconstruction accuracy on a UK Biobank dataset with Chamfer distances between predicted and input anatomies below the underlying image resolution and the ECG reconstructions outperforming a state-of-the-art benchmark approach specialized in ECG generation. We also evaluate its generative ability and find comparable populations of generated and gold standard anatomies, ECGs, and combined anatomy-ECG data in terms of common clinical metrics and maximum mean discrepancies.
AbstractList Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physiology, their complex interconnections have rarely been explored together. In this work, we propose a novel multi-modal variational autoencoder (VAE) capable of processing combined physiology and bitemporal anatomy information in the form of electrocardiograms (ECG) and 3D biventricular point clouds. Our method achieves high reconstruction accuracy on a UK Biobank dataset with Chamfer distances between predicted and input anatomies below the underlying image resolution and the ECG reconstructions outperforming a state-of-the-art benchmark approach specialized in ECG generation. We also evaluate its generative ability and find comparable populations of generated and gold standard anatomies, ECGs, and combined anatomy-ECG data in terms of common clinical metrics and maximum mean discrepancies.
Author Sang, Yuling
Beetz, Marcel
Grau, Vicente
Banerjee, Abhirup
Author_xml – sequence: 1
  givenname: Marcel
  surname: Beetz
  fullname: Beetz, Marcel
  organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK
– sequence: 2
  givenname: Abhirup
  surname: Banerjee
  fullname: Banerjee, Abhirup
  organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK
– sequence: 3
  givenname: Yuling
  surname: Sang
  fullname: Sang, Yuling
  organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK
– sequence: 4
  givenname: Vicente
  surname: Grau
  fullname: Grau, Vicente
  organization: University of Oxford,Institute of Biomedical Engineering,Department of Engineering Science,UK
BookMark eNotkM1OwzAQhA0Cibb0CZCQXyDFv018LFEpkVpxgHKtNs6mMkps5KSHvj0GupedGa1G-nZKbnzwSMgjZwvOmXmq3p8rLQphFoIJsTD5kmvDrsiUL5daCSOkuCYTbpTOCqXFHZkPwxdLkyslmZoQX4a-dh4bukGPEUYXPA0tXXdoxxgsxMaFY4Segm9o-WvB0pWHMfRnugsNdgPdD84f6e7UjS5LEXT0E6L760p6dRoDeptO43BPblvoBpxf9ozsX9Yf5Wu2fdtU5WqbOcHkmKkiN1JziwpZwRIpilq2STJs2iaXxticGyZFrTnw3NSQcA3UFo0F1Uo5Iw__vQ4RD9_R9RDPh8t75A9Du1zp
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI52829.2022.9761590
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665429232
9781665429238
EISSN 1945-8452
EndPage 4
ExternalDocumentID 9761590
Genre orig-research
GrantInformation_xml – fundername: Heart Foundation
  funderid: 10.13039/100002129
– fundername: European Commission
  funderid: 10.13039/501100000780
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-4879351ce4e080110e2b3f0800edfd7399c719032b51a179ba6659abce9ca4f33
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836243800189&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Jul 18 03:48:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4879351ce4e080110e2b3f0800edfd7399c719032b51a179ba6659abce9ca4f33
PageCount 4
ParticipantIDs ieee_primary_9761590
PublicationCentury 2000
PublicationDate 2022-March-28
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-March-28
  day: 28
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.3035269
Snippet Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 3D Cardiac Anatomy Generation
Biological system modeling
Combined Anatomy and Electrophysiology Modeling
ECG Synthesis
Electrocardiography
Geometric Deep Learning
Measurement
Multi-Modal VAE
Physiology
Point cloud compression
Sociology
Three-dimensional displays
Title Combined Generation of Electrocardiogram and Cardiac Anatomy Models Using Multi-Modal Variational Autoencoders
URI https://ieeexplore.ieee.org/document/9761590
WOSCitedRecordID wos000836243800189&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCLj1Z8k4NH03Y3m83usZYWC1IKaumt5DELhbor7Vbw3zvJLlXBi7cQCAuTHWa-yffNEHIXW0D3U4Ih9nAARRmmFcSMc6fTDKQOfJ-C2ZOcTJL5PJ02yP1OCwMAnnwGHbf0b_m2MFtXKuti6MToiwB9T8q40mrt6ikYCiOE5rUIOOil3fHzw1i4h0JEgWHYqQ__mqLig8jo6H-fPybtbzUene7izAlpQH5KDn80EmyRHN0aIS5YWrWRdtamRUaH1ZAb40mnjodFVW7pwP8VhvZzRNxvn9TNQ1ttqGcPUK_IZbilVnSGQLouFtL-tixc00tHfG6T19HwZfDI6kkKbBn2eMkQlaRcBAYiwAwRrQOh5plLFsFmVmKSYiRmBjzUIlDoolrFsUiVNpAaFWWcn5FmXuRwTqgSumchzmJtRGQCSIwGMFKDlRAkib4gLWe5xXvVLGNRG-3y7-0rcuAux5G6wuSaNMv1Fm7Ivvkol5v1rb_hL8VpqRM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KCurFRyu-3YNH0ybZbB7HWlparKVgLb2VfUygUBNpU8F_7-wmVAUv3paFhTCbYeab_b4ZQu5DDeh-gjuIPQxAEcqRAkKHMaPT9CLp2T4F02E0GsWzWTKukYetFgYALPkMmmZp3_J1rjamVNbC0InRFwH6Lg8C3y3VWtuKCgbDAMF5JQP23KQ1eHkccPNUiDjQ95vV8V9zVGwY6R397wOOSeNbj0fH20hzQmqQnZLDH60E6yRDx0aQC5qWjaSNvWme0m455kZZ2qlhYlGRadqx_4Wi7Qwx99snNRPRlmtq-QPUanId3BJLOkUoXZULaXtT5KbtpaE-N8hrrzvp9J1qloKz8F1WOIhLEsY9BQFgjojWAV-y1KSLoFMdYZqiIswNmC-5J9BJpQhDngipIFEiSBk7IztZnsE5oYJLV0OYhlLxQHkQKwmgIgk6Ai-O5QWpG8vN38t2GfPKaJd_b9-R_f7keTgfDkZPV-TAXJShePnxNdkpVhu4IXvqo1isV7f2tr8AutasWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Combined+Generation+of+Electrocardiogram+and+Cardiac+Anatomy+Models+Using+Multi-Modal+Variational+Autoencoders&rft.au=Beetz%2C+Marcel&rft.au=Banerjee%2C+Abhirup&rft.au=Sang%2C+Yuling&rft.au=Grau%2C+Vicente&rft.date=2022-03-28&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI52829.2022.9761590&rft.externalDocID=9761590