Force-Directed Graph Layouts by Edge Sampling

Recent work shows that sampling algorithms can be an effective tool for graph visualization. This paper extends prior work by applying edge sampling algorithms to speed up the spring force calculation in force-directed graph layout algorithms. An experiment on 72 graphs finds that some sampling algo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2019 IEEE 9th Symposium on Large Data Analysis and Visualization (LDAV) s. 1 - 5
Hlavný autor: Gove, Robert
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2019
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Recent work shows that sampling algorithms can be an effective tool for graph visualization. This paper extends prior work by applying edge sampling algorithms to speed up the spring force calculation in force-directed graph layout algorithms. An experiment on 72 graphs finds that some sampling algorithms achieve comparable quality as no sampling. This result is confirmed with visualizations of the graph layout results. However, runtime improvements are small, especially for graphs with 10,000 vertices or fewer, indicating that the runtime savings might not be worth the risk to layout quality. Therefore, this paper suggests that accurate spring forces may be more important to force-directed graph layout algorithms than accurate electric forces. A copy of this paper plus the code and data to reproduce the results are available at https://osf.io/4ja29/.
DOI:10.1109/LDAV48142.2019.8944364