PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Computer vision with state-of-the-art deep learning models has achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large num...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 25th International Conference on Pattern Recognition (ICPR) s. 4363 - 4370
Hlavní autoři: Yu, Wenwen, Lu, Ning, Qi, Xianbiao, Gong, Ping, Xiao, Rong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 10.01.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Computer vision with state-of-the-art deep learning models has achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on realworld datasets have been conducted to show that our method outperforms baselines methods by significant margins. Our code is available at https://github.com/wenwenyu/PICK-pytorch.
AbstractList Computer vision with state-of-the-art deep learning models has achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on realworld datasets have been conducted to show that our method outperforms baselines methods by significant margins. Our code is available at https://github.com/wenwenyu/PICK-pytorch.
Author Yu, Wenwen
Gong, Ping
Xiao, Rong
Lu, Ning
Qi, Xianbiao
Author_xml – sequence: 1
  givenname: Wenwen
  surname: Yu
  fullname: Yu, Wenwen
  email: yuwenwen62@gmail.com
– sequence: 2
  givenname: Ning
  surname: Lu
  fullname: Lu, Ning
  email: jiangxiluning@gmail.com
– sequence: 3
  givenname: Xianbiao
  surname: Qi
  fullname: Qi, Xianbiao
  email: qixianbiao@gmail.com
  organization: Visual Computing Group, Ping An Property & Casualty Insurance Company,Shenzhen,China
– sequence: 4
  givenname: Ping
  surname: Gong
  fullname: Gong, Ping
  email: gongping@xzhmu.edu.cn
  organization: School of Medical Imaging, Xuzhou Medical University,Xuzhou,China
– sequence: 5
  givenname: Rong
  surname: Xiao
  fullname: Xiao, Rong
  email: rongxiao@gmail.com
  organization: Visual Computing Group, Ping An Property & Casualty Insurance Company,Shenzhen,China
BookMark eNotUF1PgzAUrYk-uOkvMDH9AyC3LVB8Mzgn2aLE6PPSlVslQksKzO3fi3M5D-fmfNyHMyPn1lkk5BaiECDK7oq8fBNSRknIIgZhJoBlLD0jM0iZhMmQ_JK4sshX97T0TmPf1_aTrvBAC2ucb9VQO0sX-8ErfTyNdy19dHps0Q49HY_5ou2822FFl151X3SNyttJD3Jnd64Z_4qqoS84_Dj_3V-RC6OaHq9PPCcfT4v3_DlYvy6L_GEd1CziQyBirZNKoEQRx3GVGcW5EJnSoBLNJyQMYJtKIwRqwYwyqRQJTG6iwWwNn5Ob_781Im46X7fKHzanDfgvmdZZJw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR48806.2021.9412927
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728188083
9781728188089
EndPage 4370
ExternalDocumentID 9412927
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-45cc6d4e8e4555d9fa33449ac1a6c3c3c6211b78f44ec42faf784611a66c1fbf3
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678409204065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:39:16 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-45cc6d4e8e4555d9fa33449ac1a6c3c3c6211b78f44ec42faf784611a66c1fbf3
PageCount 8
ParticipantIDs ieee_primary_9412927
PublicationCentury 2000
PublicationDate 2021-Jan.-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2020 25th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.546781
Snippet Computer vision with state-of-the-art deep learning models has achieved huge success in the field of Optical Character Recognition (OCR) including text...
SourceID ieee
SourceType Publisher
StartPage 4363
SubjectTerms Deep learning
Feature extraction
Information retrieval
Layout
Semantics
Text recognition
Visualization
Title PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks
URI https://ieeexplore.ieee.org/document/9412927
WOSCitedRecordID wos000678409204065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qPfTUFi19k0OPjZpNNjG9Wm3FIktpwZtkk0kRioqu0v77JrvBUuil5BLyYGAmYTKT-WYQuqWGOy4YJyLJLfHv24TkIlEEtNfVLrdATZnE9VlOJr3pVGU1dLfHwgBAGXwG7dAt__Lt0myDq6yjuNdOiayjupSiwmpF0C_tqs6on72E4xgCDxLajot_VU0plcbw6H_kjlHrB32Hs71eOUE1WDTRMhv1x_c4xvX7cTyGLxzBRIG5ePBZrCuUAg6YEfwQCWzwtlxfuQ_A4seQoxrHxKrvxFPdxfOnP_CkCgvftNDbcPDafyKxWAKZJ11WEJ4aIyyHHvA0Ta1ymjHOlTZUC8N8E97Uy2XPcQ6GJ0476Z8e1M8KQ13u2ClqLJYLOEM4FbkC63dKpv0Vd56lTGiVS-utC6nZOWoGZs1WVT6MWeTTxd_Dl-gwyCO4LWj3CjWK9Rau0YHZFfPN-qYU4jdOy6GN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CnpSacW3OXg07eax2cZrtba0LotU6K1k85CCtNJui_57k91QEbxILiEPBmYSJjOZbwaAW6yYZZwyxEmukXvfEpRzIpCRTlfbXBusyiSuoyRNO5OJyGrgbouFMcaUwWem5bvlX75eqLV3lbUFc9qJJDtgN2aMRBVaK8B-cSTag2724g-kDz0guBWW_6qbUqqN3uH_CB6B5g_-DmZbzXIMambeAIts0B3ewxDZ78bh0HzBACfy7IWPn8WywilAjxqBD4HACq7L9ZUDwWj45LNUw5Ba9Q05qptwAuU7TKvA8FUTvPYex90-CuUS0IxEtEAsVoprZjqGxXGshZWUMiakwpIr6hp3xl6edCxjRjFipU3c4wO7Wa6wzS09AfX5Ym5OAYx5Lox2OxMq3SW3jqWUS5En2tkXiaRnoOGZNf2oMmJMA5_O_x6-Afv98fNoOhqkwwtw4GXjnRg4ugT1Yrk2V2BPbYrZanldCvQb4OKk1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=PICK%3A+Processing+Key+Information+Extraction+from+Documents+using+Improved+Graph+Learning-Convolutional+Networks&rft.au=Yu%2C+Wenwen&rft.au=Lu%2C+Ning&rft.au=Qi%2C+Xianbiao&rft.au=Gong%2C+Ping&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=4363&rft.epage=4370&rft_id=info:doi/10.1109%2FICPR48806.2021.9412927&rft.externalDocID=9412927